STREAM RESTORATION PLAN

NAME OF COMPANY

Constraints and

And a second sec

Contraction of the

and a second sec

LANNER WILLIAM

Selfestromage

A a la constant

and in such

Beaver Creek Surry County, North Carolina

N.C. Wetlands Restoration Program ______NCDENR_DWQ

December 2001

710 Corporate Center Drive, Suite 475 Raleigh, North Carolina 27607

-

Second Second second

And a second second second

Guardiana

Second Second

Suppression of the

A STATE OF A STATE OF

(All and the second sec

Concentration of the local data

Constanting of the second

TABLE OF CONTENTS

1.0	INTRO	ODUCTION1
	1.1	PROJECT DESCRIPTION
	1.2	GOALS AND OBJECTIVES
	1.3	STREAM SURVEY METHODOLOGY
		1.3.1 Stream Delineation Criteria - Classification
		1.3.2 Bankfull Verification
_		
2.0		FING CONDITIONS
	2.1	WATERSHED
		2.1.1 General Description of the Watershed
		2.1.2 Surface Waters Classification
		2.1.3 Soils of the Watershed
		2.1.4 Land Use of the Watershed
	2.2	RESTORATION SITE
		2.2.1 Site Description
		2.2.2 Existing Stream Characteristics
		2.2.3 Soils of the Restoration Site
	•	2.2.4 Terrestrial Plant Communities
		2.2.4.1 Managed Land
		2.2.4.2 Cutover Land
		2.2.4.4 Upland Hardwood Forest
		2.2.5 Wildlife Observations
3.0	REFE	IPERENCE REACHES
	3.1	BIG BRANCH 19
	3.2	BASIN CREEK19
4.0		EAM CHANNEL DESIGN
	4.1	RESTORATION TECHNIQUES
		4.1.1 Dimension
		4.1.2 Pattern
		4.1.3 Bedform
	4.0	4.1.4 Riparian Areas
	4.2 4.3	SEDIMENT TRANSPORT
	4.5 4.4	STRUCTURES
	4.4	4.4.1 Cross Vane
		4.4.2 Root Wads
		4.4.3 Double Wing Deflectors
5.0	HAB	ITAT RESTORATION
	5.1	Vegetation
	5.2	Riparian Buffers
		•

international second second

(openantical)

Approximation and

Same and the second

Al Alexandra Landon Sal

(Hereinsteinen volg

Contraction of the local division of the loc

Construction of the local distribution of th

(Second Second

(Annual States)

and a second

	5.	2.1 Bottomland Hardwood Forest	
	5.	.2.2 Grassy Riparian Buffer	
		.2.3 Temporary Seeding	
6.0	MONITO	ORING	40
	6.1 S	TREAM CHANNEL	
		EGETATION	
	6.3 M	IACROINVERTEBRATES	
7.0	REFERE	INCES	

LIST OF TABLES

Table 1.	Species Under Federal Protection in Surry County	18
Table 2.	Priorities, Description and Summary for Incised River Restoration	23
Table 3.	Morphological Characteristics	24
Table 4.	Stream Monitoring Practices	40

LIST OF FIGURES

Figure 1	Location Map	3
Figure 2	Vicinity Map	4
Figure 3	North Carolina Regional Curve	7
Figure 4	Beaver Creek Watershed	9
Figure 5	Watershed Aerial	11
Figure 6	Parcels	12
Figure 7	Soils	15
Figure 8	Natural Communities	17
Figure 9	Big Branch Watershed	20
Figure 10	Basin Creek Watershed	21
Figure 11	Proposed Stream Restoration Design	27
Figure 12	Typical Cross-sections of New Channel	30
Figure 13	Typical Bedform	31
Figure 14	Proposed Profile	. 32
Figure 15	Typical Cross-Sections Showing Vegetation Zones	38

LIST OF APPENDICES

Appendix A	Photo Log
Appendix B	Existing Conditions Data
Appendix C	Basin Creek Reference Reach Data
Appendix D	Big Branch Reference Reach Data

1.0 INTRODUCTION

The North Carolina Wetlands Restoration Program (NCWRP) has identified Beaver Creek as a potential stream restoration site. A tributary to the Fisher River, Beaver Creek (NCDWQ Stream Index Number -12-63-12) is located on agricultural land southeast of the town of Dobson in Surry County, North Carolina (Figure 1).

The Surry County Soil and Water Conservation District (SCSWCD) staff first identified Beaver Creek as a potential restoration site after landowners complained about active erosion and flooding adjacent to the stream. The stream was actively eroding along a tight meander located within property owned by Mr. Mike Jones. The meander eroded to the point where the radius was so tight that water was overtopping the bank and flooding the adjacent landowners (Mr. Wayne Draughn) field during storm events. Mr. Draughn is using the land adjacent to the meander as a garden. Mr. Jones attempted to stop the erosion by placing logs and other cuttings along the outside meander of the eroding bank. Mr. Draughn complained that this increased the flooding to his property. An on-site assessment determined that the small radius of curvature of the meander was likely the cause of the increased flooding. The placement of the logs more then likely did not significantly increase flooding frequency or magnitude.

Beyond the above stated problem area, Beaver Creek has other areas of significant active bank erosion throughout the proposed project limits. There is evidence of historic straightening and degradation resulting from this straightening. Thinning and removal of riparian vegetation has also accelerated the degradation process. The incised condition of the existing channel is accelerating the erosion process by forcing the channel to contain larger then bankfull storm events. One of the three tributaries within the project limits has also been straightened. The restoration site is located entirely within undeveloped land consisting of agricultural land predominantly being used for hay production, woodland, and sparse crop production. There are no utilities within the project limits. All of these characteristics combine to make Beaver Creek an excellent potential restoration site.

Restoration requires determining how far the stream has departed from its natural stability and then, establishing the stable form of the stream under the current hydrologic conditions within the drainage area. The proposed restoration will construct a stable meander geometry, modify channel cross-sections, raise the existing streambed elevation where possible, and establish a floodplain at the new stream elevation, thus, restoring a stable dimension, pattern and profile. This restoration is based on analysis of current watershed hydrologic conditions, evaluation of the project site, and assessments of stable reference reaches. The following recommendations are included in this restoration plan:

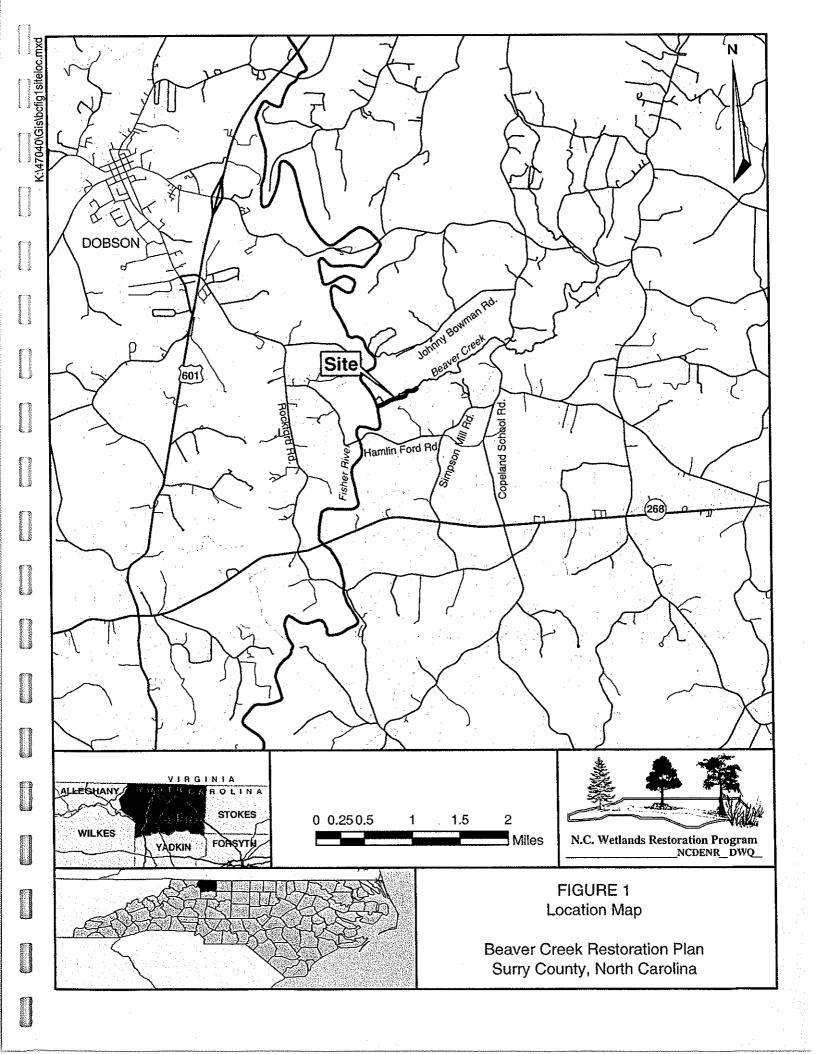
- Form a stable channel with the proper dimension, pattern and profile.
- Raise the existing streambed elevation where possible.
- Establish a floodplain along the stream channel.

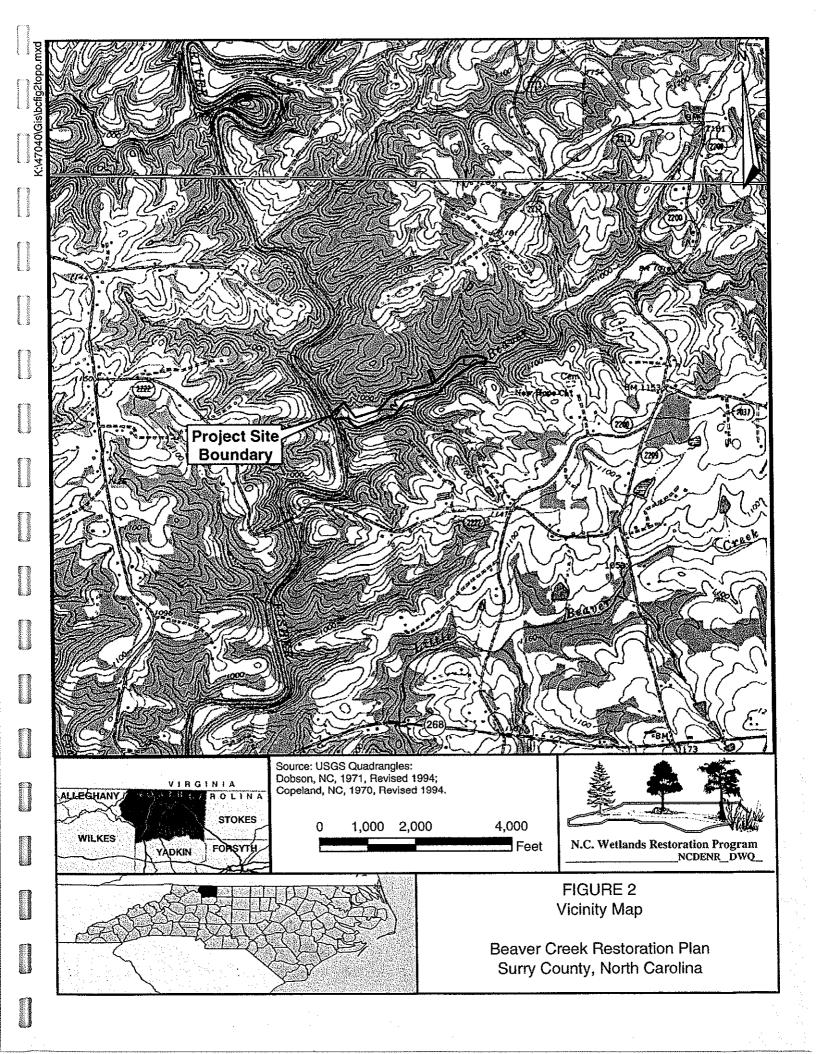
1

- Place natural material structures in the stream to improve stability and enhance aquatic habitat.
- Stabilize stream banks with herbaceous and woody vegetation

1.1 PROJECT DESCRIPTION

Beaver Creek project site is located southeast of Dobson in Surry County, North Carolina. The project is fully contained within the property of five landowners. The project reach is bound by a stable bedrock section of channel to the east (upstream) and the Fisher River to the west (downstream) (Figure 2). Adjacent hill slopes to the north and south approach the stream bank in several areas along the project limits. An access road parallels the stream throughout the project. The access road varies in distance from the 10 to 400 feet away from the existing channel.


1.2 GOALS AND OBJECTIVES


This project has the following goals and objectives:

- 1. Restore 4620 linear feet of Beaver Creek (as measured along the thalweg) and 380 linear feet of an unnamed tributary to Beaver Creek.
- 2. Provide a stable stream channel that neither aggrades nor degrades while maintaining its dimension, pattern, and profile with the capacity to transport its watershed's water and sediment load.
- 3. Improve water quality and reduce further property loss by stabilizing eroding stream banks.
- 4. Reconnect the stream to its floodplain or establish a new floodplain at a lower elevation.
- 5. Improve aquatic habitat with the use of natural material stabilization structures such as root wads, rock vanes, woody debris and a riparian buffer.
- 6. Provide aesthetic value, wildlife habitat and bank stability through the creation or enhancement of a riparian zone.

1.3 STREAM SURVEY METHODOLOGY

The US Forest Service General Technical Report RM-245, Stream Channel Reference Sites: An Illustrated Guide to Field Technique is used as a guide when taking field measurements. Accurate field measurements are critical to determine the present condition of the existing channel, conditions of the floodplain, and watershed drainage patterns.

Earth Tech contracted surveyors with The Rose Group to conduct a topographic survey of the restoration site in September 2001. This mapping was used to evaluate present conditions, new channel alignment and grading volumes. Mapping also provided locations of property pins, large trees, vegetation lines, culverts, roads, and elevation contours.

A walkover of the property was conducted to better evaluate the drainage properties of the area surrounding the restoration site. SCSWCD provided Geographic Information System (GIS) data to evaluate the watershed. A windshield survey was also conducted to determine the existing conditions within the watershed.

During the site visits, eight cross-sections were taken using standard differential leveling techniques. These cross-sections were used to gather detail on the present dimension and condition of the channel. Cross-sectional area was calculated using the bankfull features. See Appendix B for a copy of the existing condition surveys.

1.3.1 Stream Delineation Criteria - Classification

Dave Rosgen developed his stream classification system in order to accomplish the following:

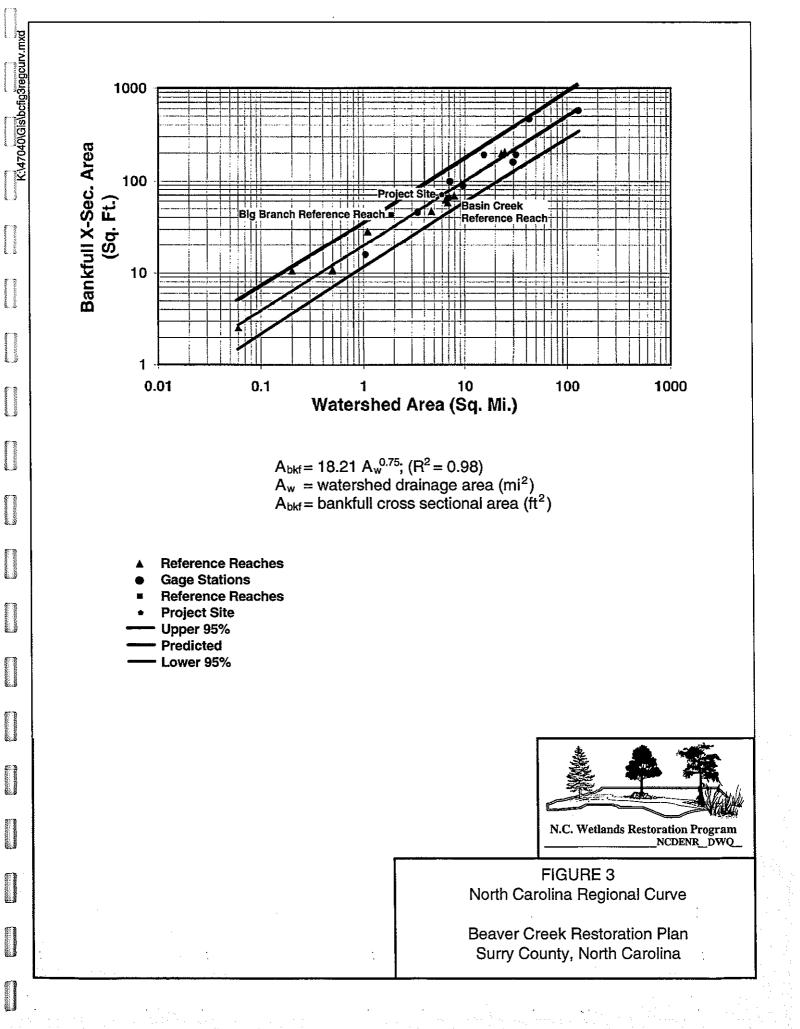
- 1) Predict a river's behavior
- 2) Develop specific hydraulic and sediment relationships for a given stream type and its state
- 3) Provide a mechanism to extrapolate site-specific data to stream reaches having similar characteristics
- 4) Provide a consistent frame of reference for communicating stream morphology and condition among a variety of disciplines and interested parties

The Rosgen Stream Classification System is based on five criteria: width/depth ratio, entrenchment ratio, slope, sinuosity, and channel materials. All cross-sections were classified using this system.

1.3.2 Bankfull Verification

The foundation of Dave Rosgen's classification system is the concept of bankfull stage, which is the point of incipient flooding. The width/depth and entrenchment ratios described above depend on the correct assessment of bankfull. If bankfull is incorrectly determined in the field, the entire restoration effort will be based on faulty data. It is important to verify the physical indicators observed in the field with either gage data or a regional curve to ensure the correct assessment of the bankfull stage.

The bankfull stage is determined in the field using physical indicators. The following is a list of commonly used indicators that define bankfull (Rosgen, 1996):


- The presence of a floodplain at the elevation of incipient flooding.
- The elevation associated with the top of the highest depositional feature (e.g. point bars, central bars within the active channel). These depositional features are especially good stage indicators for channels in the presence of terrace or adjacent colluvial slopes.
- A break in slope of the bank and/or a change in the particle size distribution, since finer material is associated with deposition by overflow, rather than deposition of coarser material within the active channel.
- Evidence of an inundation feature such as small benches below bankfull.
- Staining of rocks.

The most dominant bankfull indicators along Beaver Creek are high scour lines and breaks in slope along the backs of point bars.

The most common method of verifying bankfull stage is to compare the field determined bankfull stage with measured stages at a stream gaging station. This calibration can be performed if there is a stream gage within the study area's hydrophysiographic region.

In ungaged areas, Dave Rosgen recommends verifying bankfull with the development of regional curves. The regional curves normally plot bankfull discharge (Q_{bkf}) , cross-sectional area, width, and depth as a function of drainage area. The cross-sectional areas of Beaver Creek and the reference reach sites used for this report are plotted on the Rural and Urban, Piedmont Regional Curve of North Carolina developed by the North Carolina State University (NCSU) Water Quality Group, 2000 (Figure 3).

Data obtained from field surveys described in Section 2.2.2 was used to compute the morphological characteristics shown on the graph. The cross-sectional area for Beaver Creek plots along the trend line for the Rural Regional Curve. The bankfull cross-sectional area for the design channel was determined from evaluating the North Carolina regional curve relationships and comparing them to the reference reach sites surveyed near the restoration site. HEC-RAS will be used to verify the design cross-sectional area for the project.

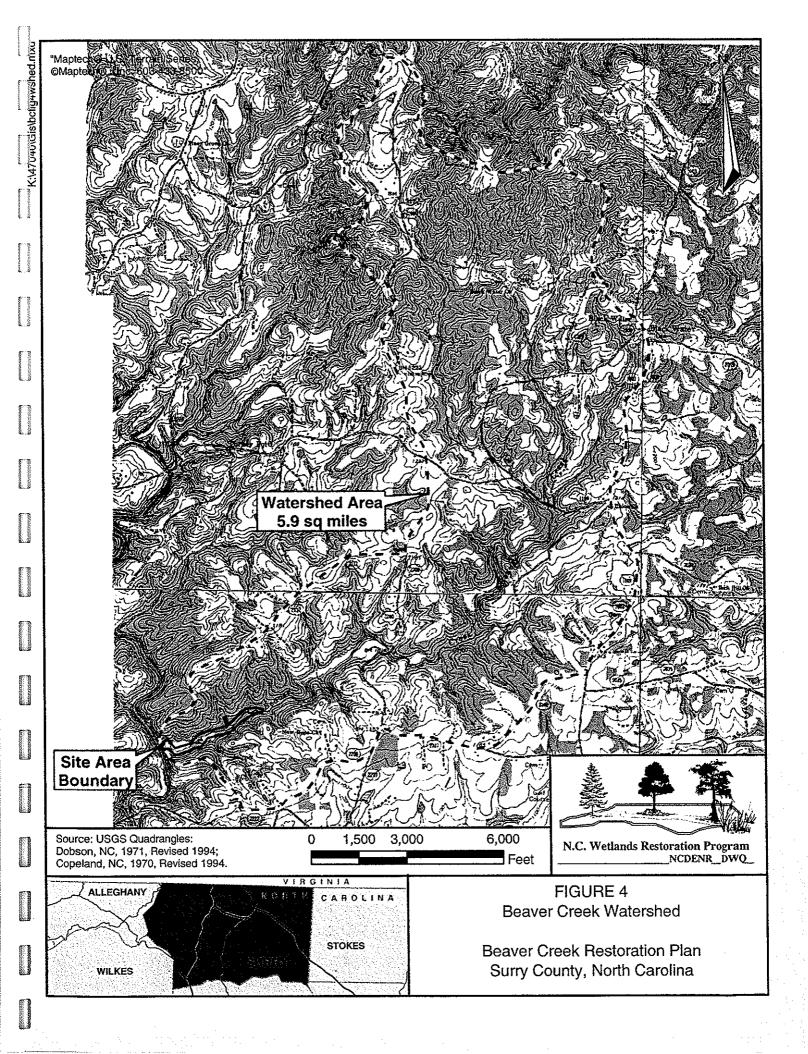
2.0 EXISTING CONDITIONS

2.1 WATERSHED

2.1.1 General Description of the Watershed

Beaver Creek, a second order stream, is located within the Piedmont Physiographic Province of the Yadkin-Pee Dee River Basin (USGS Cataloging Unit 03040101). The watershed is located to the southeast of Dobson, in Surry County, North Carolina. The headwaters of the project originate approximately 4 miles to the north-northeast of the restoration site. From the headwaters, Beaver Creek flows for approximately 5.5 miles before joining with the Fisher River. Several tributaries enter Beaver Creek along its extent.

The watershed is approximately 5.9 square miles (3,760 Acres)(Figure 4). The watershed is oriented north to south bending to the west before the project site. The watershed has a relatively constant width of approximately 5,500 ft from the headwaters to its outlet. The topography ranges from gently sloping to steep with relatively flat floodplains occurring along the larger drainages. Land surface elevations range from approximately 940 to 1,420 feet above mean sea level.


2.1.2 Surface Waters Classification

Surface waters in North Carolina are assigned a classification by the DWQ that is designed to maintain, protect, and enhance water quality within the state. Beaver Creek (NCDWQ Stream Index Number – 12-63-12) is classified as a class C water body (NCDENR, 2001). Class C water resources are waters protected for aquatic life propagation and survival, fishing, wildlife, secondary recreation, and agriculture. Secondary recreation includes wading, boating, and other uses involving human body contact with water where such activities take place in an infrequent, unorganized, or incidental manner. There are no restrictions on watershed development activities.

2.1.3 Soils of the Watershed

The soils found in the watershed and adjacent to the stream can help determine the bed and bank materials occurring in the stream. The Rosgen stream classification system uses average particle size within the bankfull channel to help classify the stream. Knowing the make up of the soils in the watershed, assists in understanding the anticipated bedload and sediment transport capacity of the stream.

Soils in upland areas within the watershed consist primarily of Fairview sandy clay loam, Clifford sandy loam, and Braddock fine sandy loam, (draft maps and descriptions of the soils in the project area – Surry County Soil Survey Office, Natural Resources Conservation Service [NRCS]). Depth to bedrock is mapped as greater than 60 inches for most soils in the watershed. A few steep areas mapped as Fairview-Stott Knob

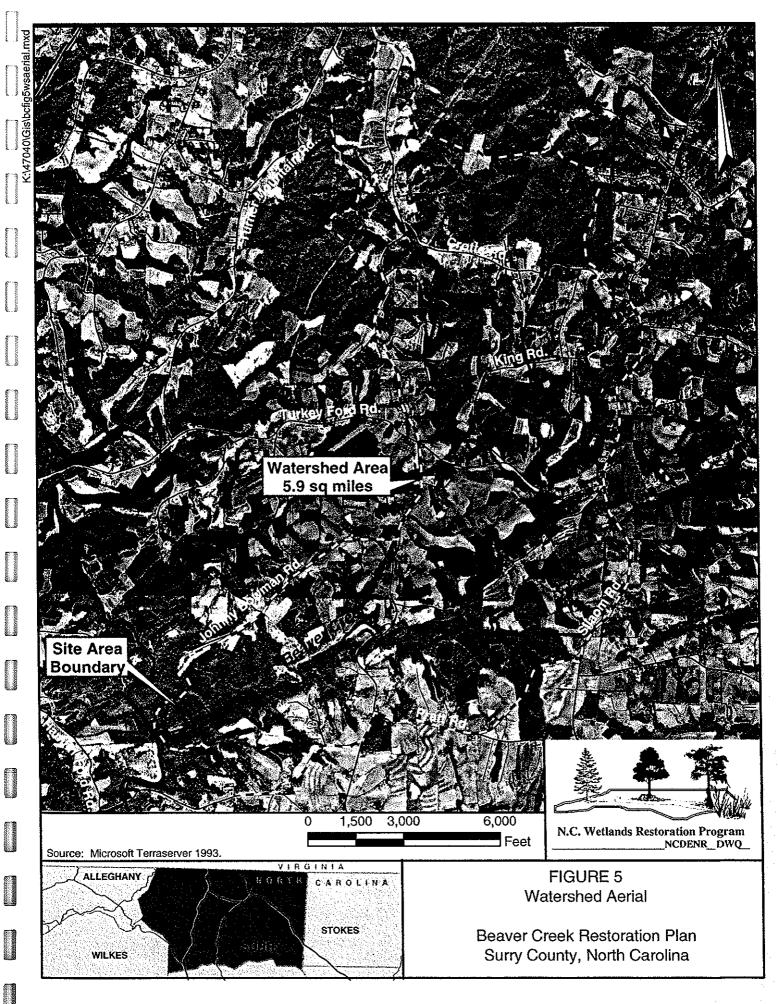
complex may have a depth to bedrock of less than 40 inches. The upland soils have clayey sub-soils with rock fragments ranging from gravel to cobble up to larger flagstone size.

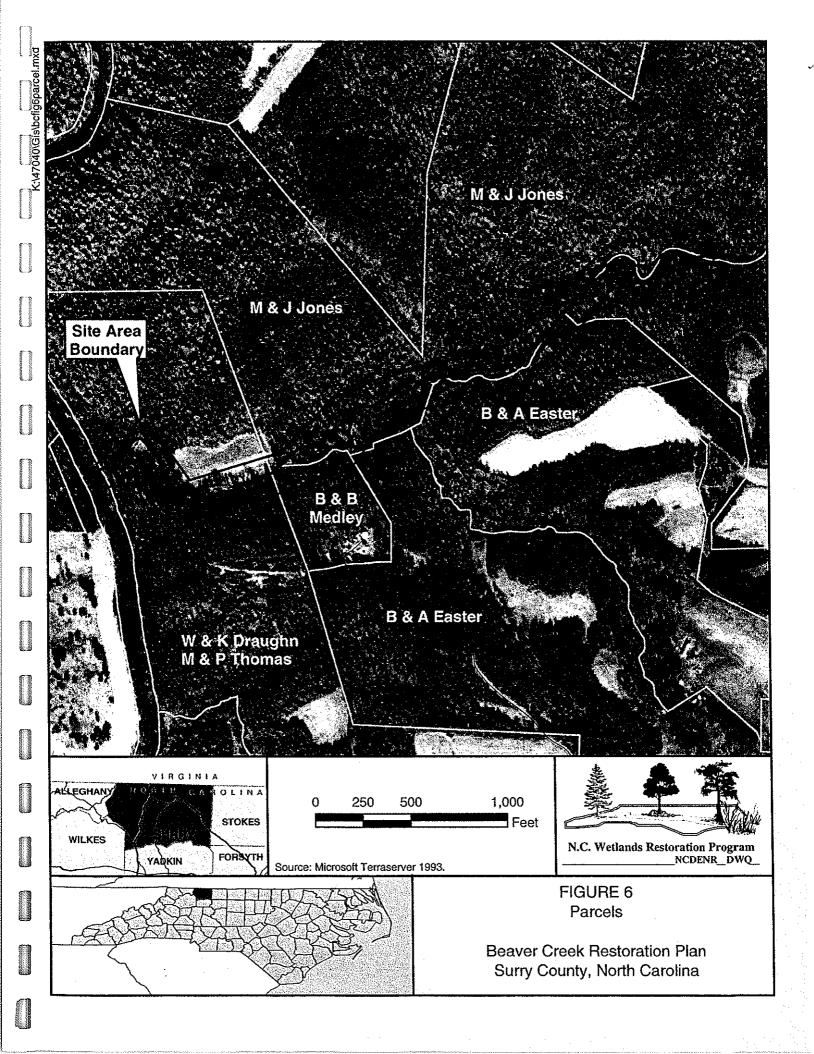
Fairview sandy clay loam occurs on the side slopes, shoulders and summits of ridges. These very deep soils are well drained, have medium to very rapid runoff, and moderate permeability. They have formed in residuum from felsic crystalline rock. The depth to the water table is greater than 6 feet. Within the watershed, Fairview soils also occur in the steep Fairview-Stott Knob complex. The Fairview-Stott Knob complex has 25 to 45 percent slopes. These soils are not separated into individual mapping units because of difficulty in distinguishing them at this mapping scale and similarity in management. Both the Fairview and Stott Knob soils are most likely in the hydrologic soil group C.

Clifford sandy loam occurs on the summits, shoulders, and sides of ridges. These soils are well drained, have medium to very rapid runoff, and a moderate permeability. The depth to the water table is 6 feet or greater. They have clayey sub-soils and have formed in residuum weathered from felsic crystalline rocks. Clifford soils are in the hydrologic soil group C.

Braddock fine sandy loam typically occurs on the footslopes of ridges and colluvial fans, and adjacent high terraces. These soils are very deep, well drained, and have slow to moderately permeability in the subsoil. The underlying substratum has moderate to moderately rapid permeability. Runoff ranges from low to moderate on nearly level slopes to very high on steep slopes. They have formed in colluvium and alluvium from a mixture of crystalline rocks. The Braddock soils are in hydrologic soil group B.

2.1.4 Land Use of the Watershed


Land use within the watershed is predominately forest or agricultural (Figure 5). Evaluation of a 1993 aerial obtained from the Microsoft Terraserver reveals that approximately 45% of the watershed is forested and 50% is agriculture. The remaining 5% is low density residential.


2.2 **RESTORATION SITE**

The following sections provide a description of existing site conditions. This includes the current stream conditions, soils, and surrounding plant communities.

2.2.1 Site Description

The Beaver Creek restoration site begins approximately 4,620 feet (as measured from the thalweg) from its confluence with the Fisher River. The project is located within the property boundaries of 5 different landowners (Figure 6). Beaver Creek flows from east

to west through a 200 to 400-foot wide floodplain. The majority of the floodplain is located on the north side of the stream and consists of pasture, clear-cut, and vegetable garden areas. The floodplain to the streams left (south) is wooded. The floodplain typically ends abruptly at the toe of the adjoining steep slopes. A segment of the stream runs along a shear rock face of the hill slope for 150 to 200 feet. The majority of the channel has long straight reaches with small areas of concentrated meanders. Channel sinuosity for the entire reach is 1.35, but the majority of the pattern is located within three tight meanders bends. Sinuosity of the meander bends range from 1.6 to 2.5. High banks and areas of severe bank erosion can be found throughout the project reach.

Three small streams enter Beaver Creek within the restoration area. These unnamed tributaries are small perennial streams that flow year round. These streams have small areas of poorly drained soils associated with them. All of these small streams flow over steep terrain before entering Beaver Creek's floodplain. The first drains into Beaver creek through a culvert. This tributary appears to be stable. The second tributary entering Beaver Creek from the north is approximately 2 to 3 feet wide and 1 to 3 feet deep, increasing to 5 feet in depth as it enters Beaver Creek. This tributary has previously been straightened. The existing bedform is predominantly a run and the channel is heavily overgrown with shrub vegetation. This tributary is part of the overall restoration project. The channel entering Beaver Creek from the south (third tributary) is 2 to 3 feet wide and is 1 to 2 feet in depth, increasing in depth as it enters Beaver Creek. This tributary will not be modified as part of this project. All of the side channels had moderate to low flow on the day of the sight visit.

The main factor in the degradation and impairment for Beaver Creek appears to be historic straightening of the channel and removal of riparian vegetation. Straightening has increased the channel slope and decreased the stream sinuosity. The channel has incised to bedrock in several areas. The increased slope and bedrock control have resulted in lateral erosion as a means to decrease slope through meandering. Meandering has accelerated in areas where the riparian vegetation has been disturbed by thinning or completely removed. Erosion has caused increased sediment supply and channel widening. This has combined to lead to the development of central bars in several straight sections of the channel. Further development of central bars will increase erosion and lateral migration of the channel.

2.2.2 Existing Stream Characteristics

Field surveys of the existing stream channel and site were conducted on August 25, 2001. Photographs of the site were taken and are provided in Appendix A. Beaver Creek Restoration Site can be typically defined as a predominantly straight channel with moderate habitat and an unstable pattern actively migrating. Stream banks are steep with areas of active erosion, particularly along outside meander bends. Long straight sections of the channel have central bars forming; indicating the channel is over-wide. Instead of focusing the flow along the thalweg, the central bars deflect the streamflow toward the banks and accelerate bank erosion. Riffle bankfull widths for Beaver Creek range from 27.0 to 37.5 feet with mean depths ranging from 1.8 to 2.8 feet. The cross-sectional areas for these riffles range from 53.3 to 89.7 square feet. The first cross-section (#101) was taken in a stable riffle upstream of the project. The stream at this point is classified as a C-type under the Rosgen classification system. All other cross-sections were taken within the reach to be restored. All cross-sections classed as type-F or G channels as the amount of incision increases downstream. The data for the existing channel is included in Appendix B. The stream has the following average characteristics:

30.6 feet
70.6 square feet
2.3 feet
3.1 feet
0.005 feet/feet
>6.0
1.35
2.0

2.2.3 Soils of the Restoration Site

According to the preliminary soil maps for Surry County, soils adjacent to Beaver Creek within the restoration site are mapped as Colvard and Suches soils (Figure 7). Investigation of the soils adjacent to the stream indicates that both soils are present, although Suches soils dominate the site. Suches soils are very deep soils and are well drained to moderately well drained. These moderately permeable soils occur on nearly level floodplains along creeks and rivers. Suches soils have formed in alluvial sediments washed largely from soils formed in residuum from metamorphic and crystalline rocks.

Soil textures encountered include sandy loams, sandy clay loams, and clay loams. Significant amounts of gravel and cobbles were noted in some horizons in some locations. Gravel and cobbles were more common in the eastern portion of the project. The seasonal high water table was observed to be greater than 40 inches for most soils within the project. Slopes range from 0 to 6 percent.

A few inclusions of an unmapped poorly drained soil were noted. These small areas occur where small tributaries enter the floodplain of Beaver Creek. The small areas of poorly drained soils are silty clay loams and included significant rock content. The seasonal high water table for these soils was observed to be less than 22 inches, with small areas less than 12 inches.

The channel has incised into the floodplain deep enough to expose cobbles and boulders in many places along the stream banks.

Second Second

Constanting of the

Contraction of the local data

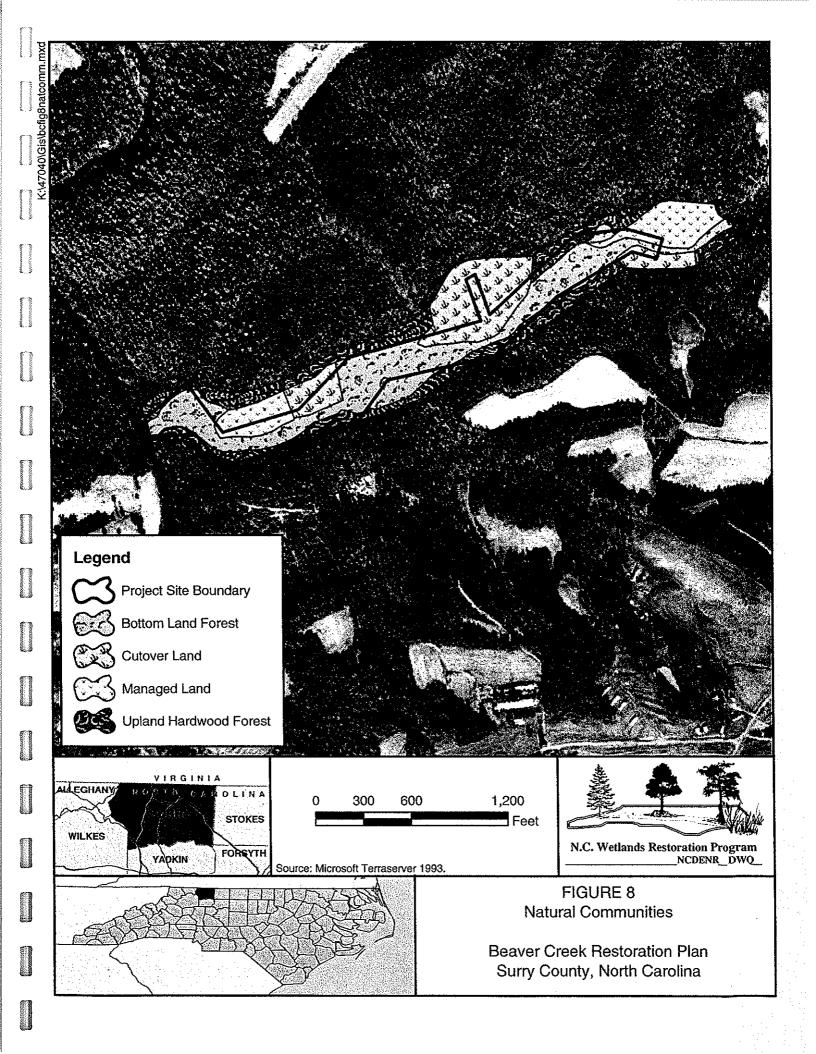
2.2.4 Terrestrial Plant Communities

The following sections describe the existing plant communities on and adjacent to the restoration site (Figure 8). For purposes of this project, four plant communities are described: Managed Land, Cutover Land, Bottomland Forest, and Upland Hardwood Forest. Nomenclature follows Radford (1968).

2.2.4.1 Managed Land

Managed Land consisting of grazed pastureland is present in the floodplain on the north side of Beaver Creek at the eastern end of the project. The vegetation is herbaceous and includes fescue grasses (*Festuca* sp.), broomsedge (*Andropogon virginica*), pokeberry (*Phytolacca americana*), and wing stem (*Verbesina alternifolia*). Included within this community type is a cultivated garden at the western end of the project near the Fisher River on land owned by Mr. Wayne Draughn.

2.2.4.2 Cutover Land


Recent clear cutting has removed trees and woody vegetation from most of the floodplain on the northern side of Beaver Creek. This disturbed community is dominated by herbaceous vegetation that has grown to a height of 7 to 10 feet. Vegetation includes: blackberry (*Rubus* sp.), black willow (*Salix nigra*), goldenrod (*Solidago canadensis*), Joepye-weed (*Eupatorium fistulosum*), pokeberry, rough boneset (*Eupatorium pilosum*), rush (*Juncus effusus*), tick-seed (*Bidens* sp.), and wingstem.

2.2.4.3 Bottomland Forest

A Bottomland Forest community is present along the floodplain and stream banks that have not been clear-cut. This a mature forest with trees reaching 70 feet in height. The understory is relatively open except where this community adjoins the disturbed areas. Trees in this community include black walnut (*Juglans nigra*), red maple (*Acer rubrum*), river birch (*Betula nigra*), and tulip poplar (*Liriodendron tulipifera*). Understory trees include umbrella tree (*Magnolia tripetala*), cucumber tree (*Magnolia acuminata*), mountain magnolia (*Magnolia fraseri*), ironwood (*Carpinus caroliniana*), rhododendron (*Rhododendron minus*), and flowering dogwood (*Cornus florida*). The herbaceous layer is diverse and includes prostrate ticktrefoil (*Desmodium rotundifolium*), wingstem, jewel weed (*Impatiens capensis*), Japanese grass (*Microstegium vimineum.*), phlox (*Phlox* sp.), and various vines. The stream bank is also vegetated and includes yellow root (*Xanthorhiza simplissima*) and groundnut (*Apios americana*).

2.2.4.4 Upland Hardwood Forest

An Upland Hardwood Forest community covers most of the upland areas adjacent to the project. This is a mature forest reaching 80 feet in height. The canopy trees in this

community include white oak (*Quercus alba*), tulip poplar, and magnolias. Prominent on the north facing slopes is an understory dominated by rhododendron, forming a continuous cover over large portions of the side slopes. On the south facing slopes the canopy species include additional species such as Virginia pine (*Pinus virginiana*) and various oaks. The understory lacks rhododendron and is not a dense as the north-facing slope. Understory species include flowering dogwood and sourwood (*Oxydendrum arboreum*).

2.2.5 Wildlife Observations

Wildlife and signs of wildlife were noted during on-site visits, however, a formal wildlife survey was not performed. Tracks of white tailed deer (*Odocoileus virginianus*) and raccoon (*Procyon lotor*) were observed along the stream banks. A variety of birds were observed in the thickets and shrubs surrounding the stream channel and forest, including: blue jay (*Cyanocitta cristata*), loggerhead shrike (*Lanius ludovicianus*), and various sparrows.

The USFWS lists 2 species under federal protection and one species of federal concern for Surry County as of March 2001 (USFWS 2001). These species are listed in Table 1.

Scientific Name			Common Name	Federal Status		
Verteb	rates					
Bog turtle			Clemmys muhlenbergii	T(S/A)		
Inverte	brates					
Brook f	loater		Alasmidonta varicosa	FSC		
Vascul	ar Plants					
Small-whorled pogonia		ogonia	Isotria medeoloides	Е		
Notes:EEndangered-A species that is threatened with extinction throughout significant portion of its range.TThreatened-A species that is likely to become an endangered species v			agered species within the			
	T(S/A)	foreseeable future throughout all or a significant portion of its range. Threatened due to similarity of appearance.				
	FSC	Federal species of concern.				

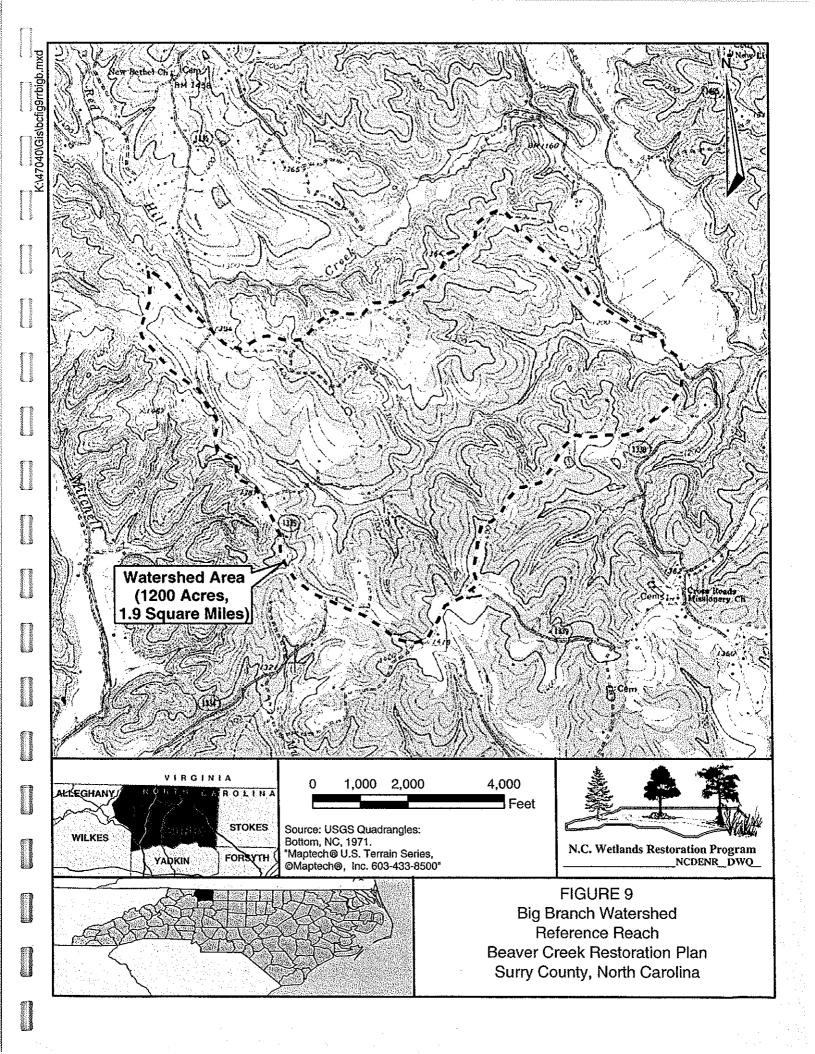
 Table 1.
 Species Under Federal Protection in Surry County

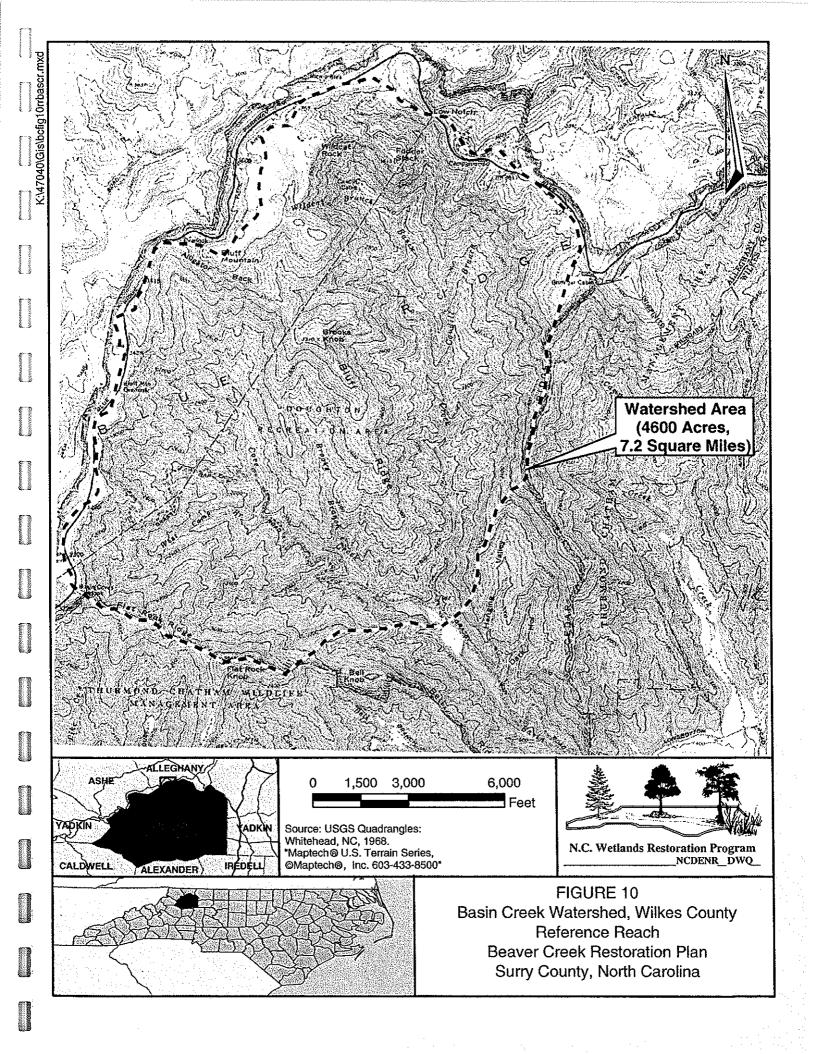
No Threatened, Endangered or Species of Federal Concern were observed during the site visit, and none are recorded at NC National Heritage Program as occurring within 2 miles (3.2 km) of the project area. Habitat may be present for the brook floater, however Earth Tech biologists did not conduct searches for this species. Habitat for the small-whorled pogonia and the bog turtle is not present on the site.

3.0 REFERENCE REACHES

3.1 BIG BRANCH

Big Branch, a second order stream, is located 1.5 miles south of Blevins Store in Surry County, North Carolina (Figure 9). Big Branch flows into the Fisher River approximately 1000 feet downstream of the reach surveyed. The stream has a drainage area of 1216 acres or 1.9 square miles. The watershed is mildly sloped (2.3 percent) with forested and agricultural areas throughout. The area surrounding the creek is forested and hilly on the south side. The north side has a thin row of trees along a road embankment. The vegetation is similar to that of the project site with dense shrub and deciduous vegetation lining its banks and adjacent floodplain. The floodplain area upstream of this reach is used for cattle grazing. The riparian area is fenced out so the cattle do not have access to the stream.


A complete biological assessment of the stream was conducted on August 16, 1999. A total of 204 benthic macroinvertebrates making up 38 taxa were found in Big Branch. Seventeen of these taxa were EPT taxa. According to this biological assessment, this stream appears to be in excellent condition. The NC biotic index value was 3.26 and the percentage of chironomids were low (6 percent).


The stream was surveyed on August 12, 1999. Channel dimension, pattern, and profile were measured for 330 linear feet of stream. The end point of the survey is located approximately 80 feet upstream of the Red Hill Creek Road bridge. The stream had a bankfull channel width of 21.5 feet and a bankfull mean depth of 2.0 feet. Big Branch is an E4 stream type from Rosgen Classification system. Longitudinal profile, cross-sections, and the pebble count for this reference reach is located in Appendix C.

3.2 BASIN CREEK

Basin Creek, a fourth order stream, is located entirely within Doughton Recreational Area in Allegheny and Wilkes Counties (Figure 10). The reach surveyed is located approximately 4000 feet up Grassy Gap Road within the park boundaries and below the junction of West Branch Basin Creek and Cove Creek. The drainage area for the reach surveyed is 4607 acres or 7.2 square miles. The watershed is steeply sloped (10.3 percent) with a heavily forested stable landuse. The entire watershed is located within State Park boundaries. Dense shrub and deciduous vegetation line the banks and adjacent hillslopes. The surveyed reach is located immediately downstream from the confluence of two colluvial B type streams.

A survey crew from Natural Resources Conservation Service and SCSWCD surveyed the stream on October 28, 1998. Channel dimension, pattern, and profile were measured for 953 linear feet of stream. The stream had a bankfull channel width of 33.2 feet and a bankfull mean depth of 2.1 feet. Basin creek is a C4 stream type. A biological assessment was not conducted on this stream. Longitudinal profile, cross-sections, and the pebble count for this reference reach is located in Appendix D.

4.0 STREAM CHANNEL DESIGN

This restoration will classify as a Priority 2 restoration (Rosgen, 1997). The floodplain will be re-established to fit the existing or slightly raised stream profile. The grade of the stream will be raised in some areas and a floodplain will be established at the new bankfull elevation. Table 2 describes and summarizes the four priorities of incised river restoration (Rosgen, 1997). The proposed stream restoration will restore the natural meander pattern, modify channel cross-section restore bedform, improve sediment transport capacity, enhance habitat, and re-establish a floodplain for the stream.

The design was based upon Dave Rosgen's natural channel design methodology. As described in Section 4.0, Big Branch and Basin Creek were utilized as reference reaches on which the morphological characteristics were measured to determine a range of values for the stable dimension, pattern, and profile of the proposed channel. The measured and proposed morphological characteristics are shown in Table 3.

360-feet of a straightened tributary will also be restored as part of this restoration project. The previously straightened tributary will be meandered through the open valley and stabilized with natural material structures and vegetation. Design parameters will based upon reference data from Big Branch.

A conceptual design was developed from the range of values listed in Table 3. This stream restoration project will result in approximately 4,300 restored linear feet (as measure from the thalweg) of Beaver Creek and 430 restored linear feet of the unnamed tributary to Beaver Creek. The plan view of the proposed restoration design can be seen in Figures 11, 11a and 11b.

(APPROVIN

Constant of Case

Concession of

Contractory of the local distribution of the

And a second second

Table 2. Priorities, Description and Summary for Incised River Restoration

DESCRIPTION	METHODS	ADVANTAGES	DISADVANTAGES
PRIORITY 1 Convert G and/or F stream types to C and/or E at previous elevation w/floodplain	Re-establish channel on previous floodplain using relic channel or construction of new bankfull discharge channel. Design new channel for dimension, pattern and profile characteristic of stable form. Fill in existing incised channel or with discontinuous oxbow lakes level with new floodplain elevation.	Re-establishment of floodplain and stable channel: 1) reduces bank height and streambank erosion 2) reduces land loss 3) raises water table 4) decreases sediment 5) improves aquatic and terrestrial habitats 6) improves land productivity, and	 floodplain re- establishment could cause flood damage to urban agricultural and industrial development. downstream end of project could require grade control from new to previous channel to prevent head-cutting.
PRIORITY 2 Convert G and/or F stream types to C or E. Re-establishment of floodplain at existing or higher, but not at original level	If belt width provides for the minimum meander width ratio for C or E stream types, construct channel in bed of existing channel, convert existing bed to new floodplain. If belt width is too narrow, excavate streambank walls. End-hall material or place in streambed to raise bed elevation and create new floodplain in the deposition.	 7) improves aesthetics. 1) decreases bank height and streambank erosion 2) allows for riparian vegetation to help stabilize banks 3) establishes floodplain to help take stress of channel during flood 4) improves aquatic habitat 5) prevents wide-scale flooding of original land surface 6) reduces sediment 7) downstream grade transition for grade control is easier. 	 does not raise water table back to previous elevation shear stress and velocity higher during flood due to narrower floodplain upper banks need to be sloped and stabilized to reduce erosion during flood.
PRIORITY 3 Convert to a new stream type without an active floodplain, but containing a floodprone area. Convert G to B stream type, or F to Bc	Excavation of channel to change stream type involves establishing proper dimension, pattern and profile. To convert G to B stream involves an increase in width/depth and entrenchment ratio, shaping upper slopes and stabilizing both bed and banks. A conversion from F to Bc stream type involves a decrease in width/depth ratio and an increase in entrenchment ratio.	 reduces the amount of land needed to return the river to a stable form. developments next to river need not be re-located due to flooding potential decreases flood stage for the same magnitude flood improves aquatic habitat. 	 high cost of materials for bed and streambank stabilization does not create the diversity of aquatic habitat does not raise water table to previous levels.
PRIORITY 4 Stabilize channel in place	A long list of stabilization materials and methods have been used to decrease stream bed and bank erosion, including concrete, gabions, boulders and bio-engineering methods	 excavation volumes reduced land needed for restoration is minimal 	 high cost for stabilization high risk due to excessive shear stress and velocity limited aquatic habitat depending on nature of stabilization methods used.

Source: Rosgen, 1997, "A Geomorphological Approach to Restoration of Incised Rivers"

23

Variables	Existing Channel	Reference Reach - Big Branch	Reference Reach-Basin Creek	Proposed Bankfull Channel
Stream Type (Rosgen)	C4, G4, and F4	E4	C4	E4
Drainage Area (sq. mi.)	5.9	1,9	7.2	5.9
Bankfull Width (W bkf, ft)	27.0 - 37.5	20.0 - 21.5	29.5 - 36.9	28
MEAN		20.0 - 21.5	33.2	
Bankfull Mean Depth (d <i>bki</i> , ft)	1.8 - 2.8	20.8	1.9 - 2.2	
MEAN				2.5
Width/depth Ratio (W bkf/dbkf)		2.0	2.1	-
	9.5 - 16.0	9.8 - 10.8	13.4 - 19.4	11.2
MEAN Bankfull Cross-sectional Area (Abkf sq. ft.)	13.6 53.3 - 89.7	10.3	16.4	
		40.9 - 42.8	64.9 - 71.9	70.0
MEAN		41.9	68.4	-
Bankfull Maximum Depth (d max ft)	2.5 - 3.3	2.5 - 2.7	3.0 - 3.2	4.2
MEAN	3.1	2.6	3.1	-
Ratio Bankfull Maximum Depth to Mean Bankfull Depth (dmax/dbkf)	1.3	<u> 1.4 - 1.3</u>	1.5	1.7
Lowest Bank Height to Bankfull Maximum				
Depth Ratio	1.6 - 2.4	1.0	1.0	1.0
MEAN		-	-	
Width of Flood Prone Area (W ipa ft)	230	130	329	230
Entrenchment Ratio (W tpa/W bkt)	7.5	65	8.9	7.5
Meander Length (Lm ft)	116 - 802	185 - 260	350	192 - 485
MEAN	338	222	350	305
Ratio of Meander Length to Bankfull Width	3.8 - 26.2	8.9 - 12.6	10.5	6.9 - 17.3
(Lm/Wbkf MEAN	>	10.7	10.5	10.9
Radius of Curvature (Rc ft)	16.0 - 285	42 - 63	40.1 - 69.3	45 - 76
MEAN		42 - 63	40.1 • 69.3	<u>45 - 76</u> 65.5
Ratio of Radius of Curvature to Bankfull Width	0.5 - 9.3	2.0 - 3.0	1.2 - 2.1	1.6 - 2.7
(Rc/Wbk/ MEAN	*I	2.6	15	0.0
Belt Width (W bit ft)			1.5	2.3
MEAN	34 - 256	31 - 44	59 - 75	43 - 208
Meander Width Ratio (W bit/W bkf)	-	37	64.7	99
MEAN	1.1 - 8.4	1.5 - 2.1	1.7 - 2.3	1.5 - 7.4
Sinuosity (Stream Length/Valley Length, k - ft/ft)	<u>3.5</u> 1.35	1.8	1.9	3.5
Valley Slope (Svalley) ft/ft	0.006	0.009	-	
Average Water Surface Slope (S avg)			-	0.006
	0.005	0.0087	0.0144	0.005*
Pool Slope (Spool)**	-	0 - 0.0004	0.0 - 0.005	0.0 - 0.008
MEAN	-	0.0001	0.006473	0.0004
Ratio of Pool Slope to Average Slope (Spool/Savg)	-	0.011	0.45	0.08
Riffle Slope (Sriff ft/ft)*	-	0.015 - 0.019	0.018 - 0.02	0.004 - 0.032
MEAN	<u>ــــــــــــــــــــــــــــــــــــ</u>	0.017	0.02082	0.010
Ratio of Riffle Slope to Average Slope (Sriff/Savg)	-	1.95	1.44	2.0
MEAN		1.95	1.39	
Maximum Pool Depth (d pool ft)	3.4 - 5.3	3.5 - 4.0	4.1 - 5.2	
MEAN		3.8	4.8	5.5
Ratio of pool depth to mean bankfull depth (dpool/dbkf)	1.9	1.9	2.3	2.2
Pool Width (W pool ft)	23.1 - 35.3	17.8 - 19.0	35 - 68	
MEAN				30
Ratio of Pool Width to Bankfull Width (Wpool/Wbkf)	0.8 - 1.2	0.9	50.3	
MEAt		0.3	1.0	1.1
				-
Pool to Pool Spacing (P-P ft)	80 - 440	98 - 180	271 - 334	94 - 321
LICAL				
MEAN		139	305	159
MEAt Ratio of P-P to Bankfull Width (P-P/W <i>bkt</i>) MEAt	2.6 - 14.4	4.7 - 8.7 6.7	<u>305</u> 8.2 - 10.1 9.2	159 3.4 - 11.5 5.7

Table 3. Beaver Creek Morphology (Existing, Proposed, and Reference)

and substrational

and a second sec

and the second se

and the second se

*The avg. water surface slope neglects the final 200 feet of stream where grade will be lowered to tie into Fisher River. **Existing Riffle and Pool slopes were not measured. ***The Max. Riffle Slope do not include grade changes produced by cross-vanes.

4.1 **RESTORATION TECHNIQUES**

Stream dimension, pattern, and profile will be adjusted so the new stream channel can maintain stability while transporting its water and sediment load. The Priority 2 restoration (see Table 2) will involve modifying the existing channel at its existing elevation to create a stable channel (Figures 11, 11a and 11b).

Vegetation will be utilized to provide stability and provide habitat along the stream banks and in the riparian area. The greatest advantage of this Priority 2 restoration will be to create a floodplain that the active channel can actively access. Other advantages of a Priority 2 restoration include improving aesthetics, improving habitat, reduction of bank height and streambank erosion, and lowering of the in-channel shear stress.

4.1.1 Dimension

The present bankfull channel width ranges from 27.0 to 37.5 feet with a cross-sectional area ranging from 53.3 to 89.7 square feet. The design channel will be constructed to bankfull target dimensions that are based on a combination of reference reach surveys, HEC RAS modeling, and regional curve information. Typical cross-sections can be seen in Figure 12.

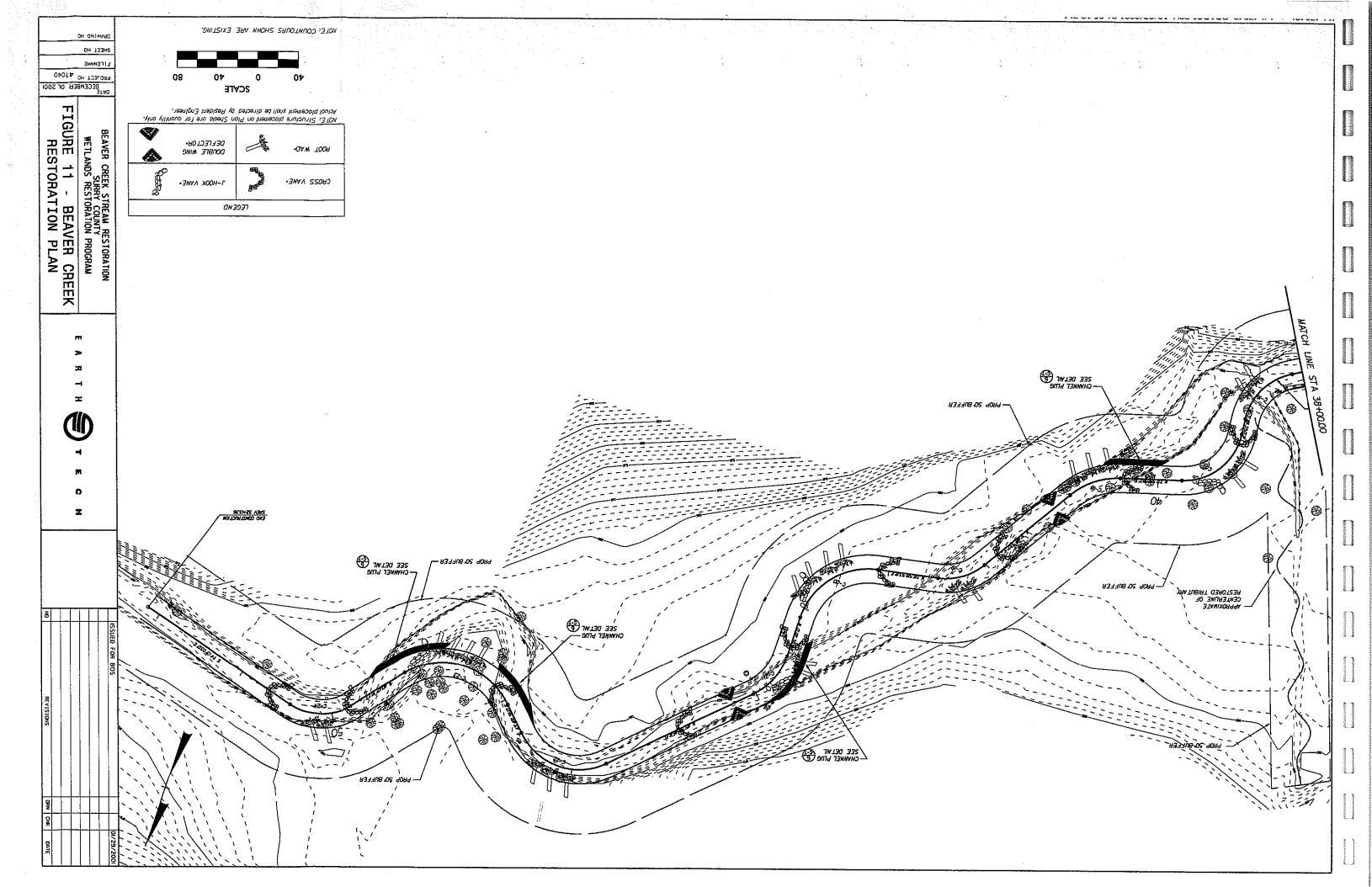
A design width of 28 feet will be applied to the proposed reach. This width was backcalculated from the cross-sectional area taken from the NC Piedmont Regional Curve and a width-to-depth ratio of 11.2. Required mean depth of the channel was verified using critical dimensionless shear stress relationships to ensure there is enough design depth to transport the channel bedload without aggrading or degrading. These characteristics will provide a stream channel that classifies as an E-type channel according to the Rosgen classification system.

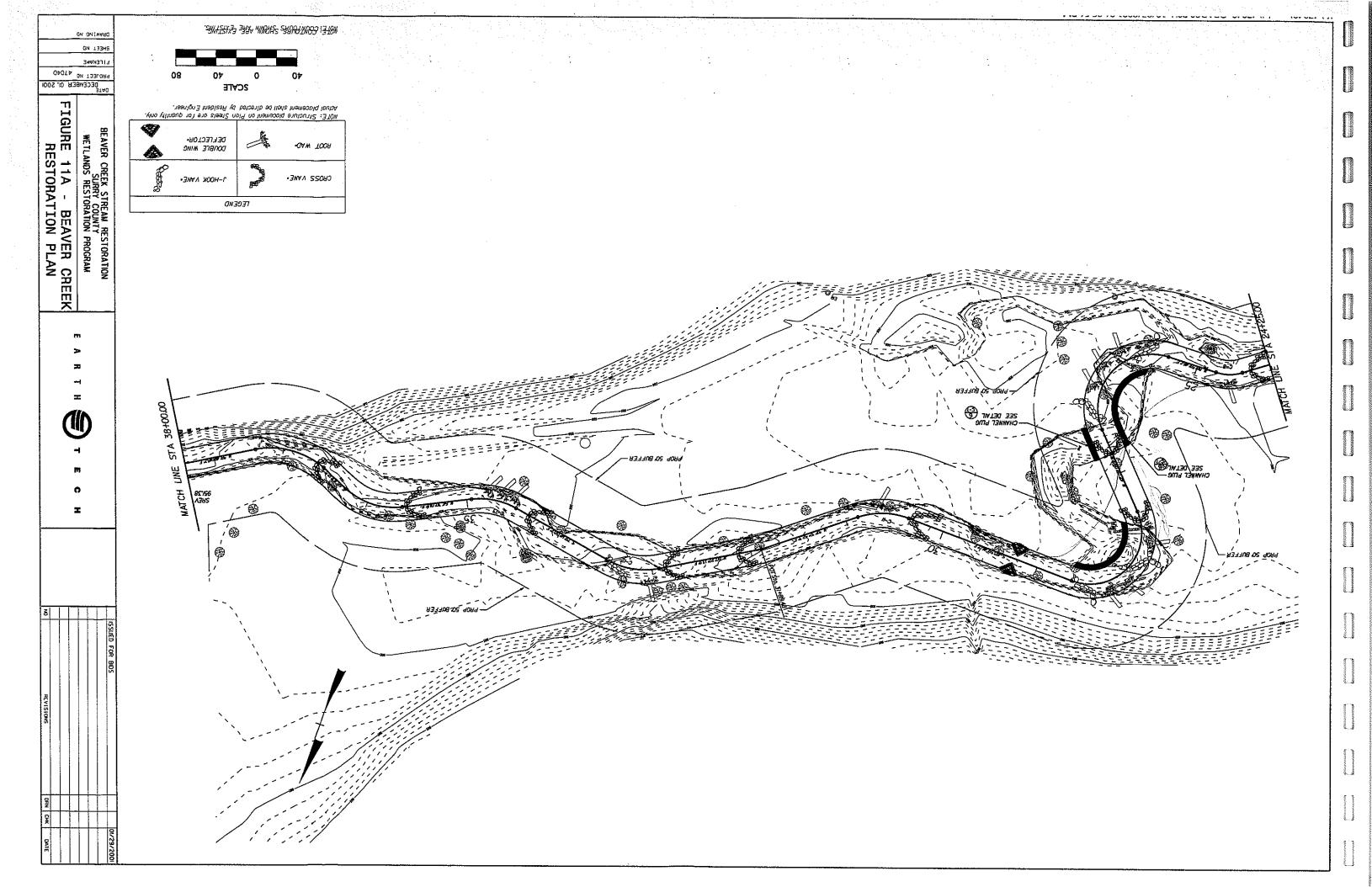
The existing channel, with bank height ratio's ranging from 1.6 to 2.4, will have benches cut at the bankfull elevation. This bankfull bench will establish a floodplain at the bankfull elevation of the existing channel. Channel width will be addressed by using double wing deflectors to narrow the existing channel in areas where the channel is overwide. Bankfull dimension will also be modified by grading banks to fit typical design cross-sections. The proposed channel will be able to access a floodplain and effectively transport the sediment load.

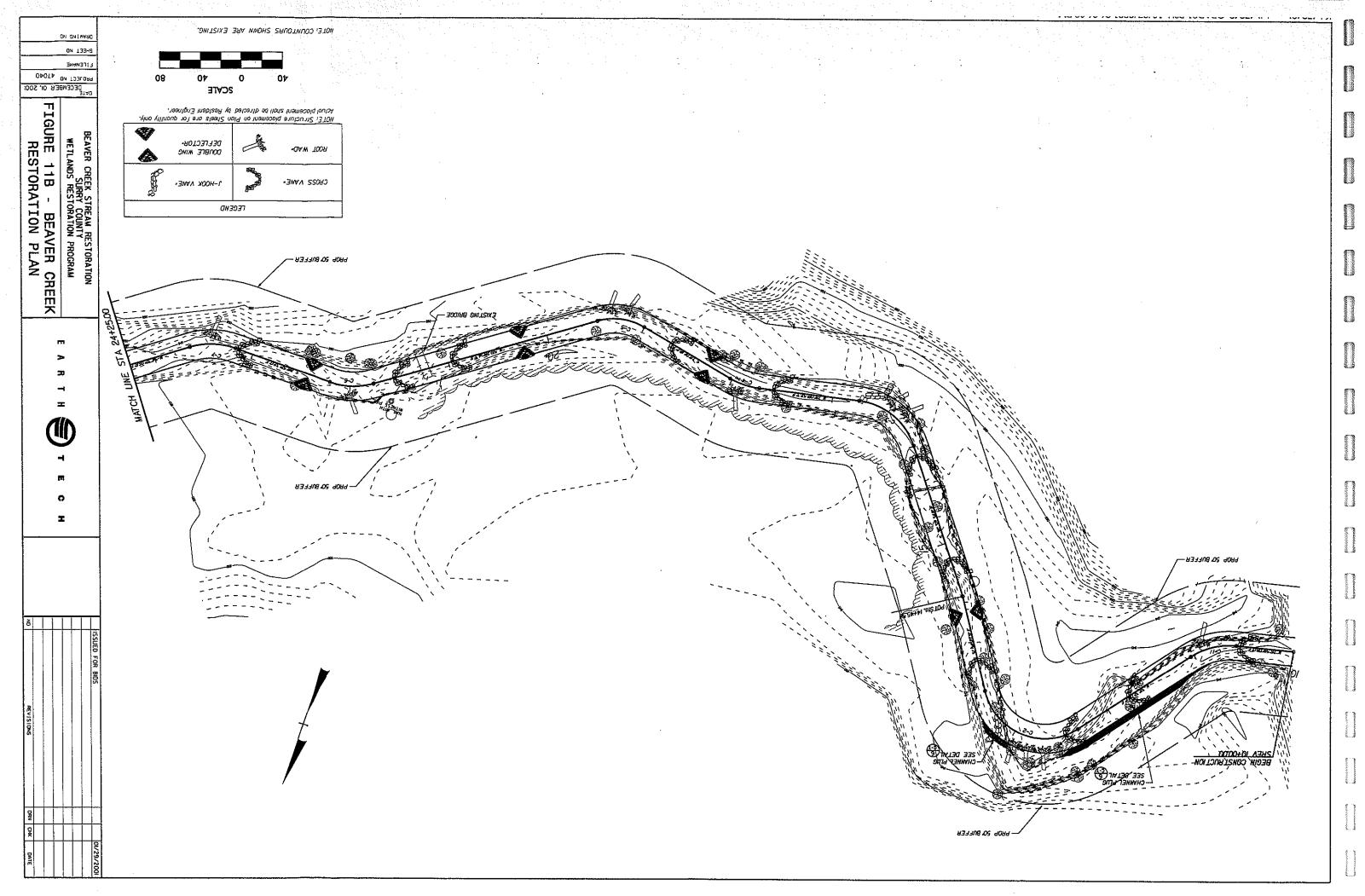
4.1.2 Pattern

The existing pattern of Beaver Creek can be described as long straight reaches followed by severely tight meanders. The current sinuosity in Reach 1 is 1.35. This sinuosity of 1.35 is not representative of the reach as a whole since the majority of the channel has a sinuosity of typically 1.1 or less. This is common on channels that have been previously straightening. The stream will continue to meander until a stable planform is established. Existing pattern measurements were taken from the topographic mapping are included in Table 3. A stable pattern will be established by softening of tight meanders and establishing new meanders in long straight sections of the channel. This will be achieved by introducing meanders into the stream with appropriate radius of curvatures and lengths based on reference reach data and existing constraints. The maximum sinuosity has been designed into the new channel based on the reference data and project constraints. Introduction of these meanders will improve habitat while lowering slope and shear stress.

4.1.3 Bedform


The existing bedform along Beaver Creek is in fair condition. Long, straight sections of the channel consist of predominantly run bedform features. The design channel will incorporate riffles and pools to provide bedform common to E4 stream types with gravel substrate (Figure 13). Pools will be located in the outside of meander bends with riffles in the inflection points between meanders. The riffles will have a thalweg depth of 4.2 feet while the pools will be deeper with a maximum depth of 5.5 feet. A graph of the proposed profile can be seen in Figure 14. The profile may be adjusted slightly during the final design phase of the project.


Cross-vanes will be utilized as grade control structures and to tie the relocated sections back into the existing channel. The cross vanes will be constructed out of natural materials such as boulders and wood. In effort to minimize the cut requirements, crossvanes will be used to raise the streambed in some locations. Two existing bedrock outcroppings will be incorporated into the proposed stream profile.


The existing pool-to-pool spacing is impaired in areas due to tight meander geometry. The proposed spacing is 94 to 321 feet, which is within the range of 3 and 12 bankfull widths as determined from the reference reach data. To accomplish this, pools will be realigned or constructed such that they will be located in the outside of the meander bends. Bedform will also be addressed through the strategic placement of natural material structures such as cross vanes, root wads and large woody debris. Double wing deflectors will be used in key locations to narrow the low flow channel and improve habitat. Modifications to the bedform will provide stability and habitat to the channel.

4.1.4 Riparian Areas

A riparian zone will be created around the new proposed stream channel to enhance both aquatic and terrestrial habitat as well as stabilize the stream channel. The riparian zone will extend at least 50 feet on either side of the channel from the top of bank (Figure 14). These areas will be planted with appropriate riparian vegetation as described in Section 6.0 Habitat Restoration.

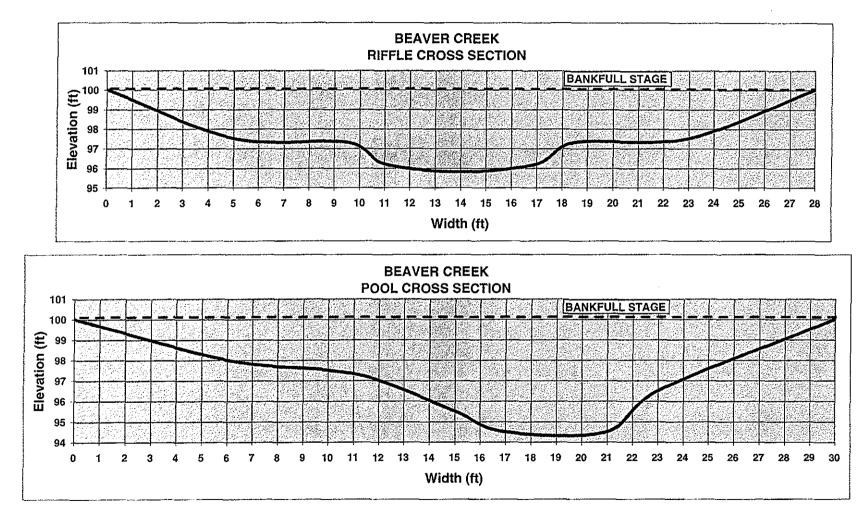
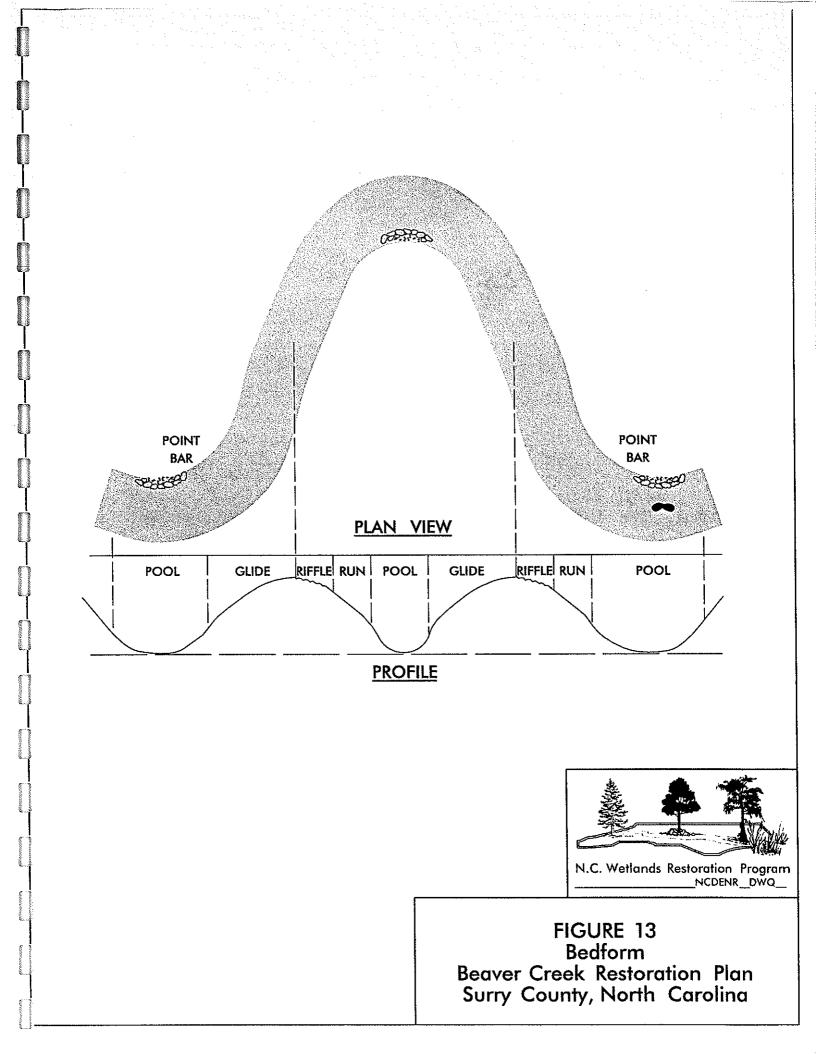
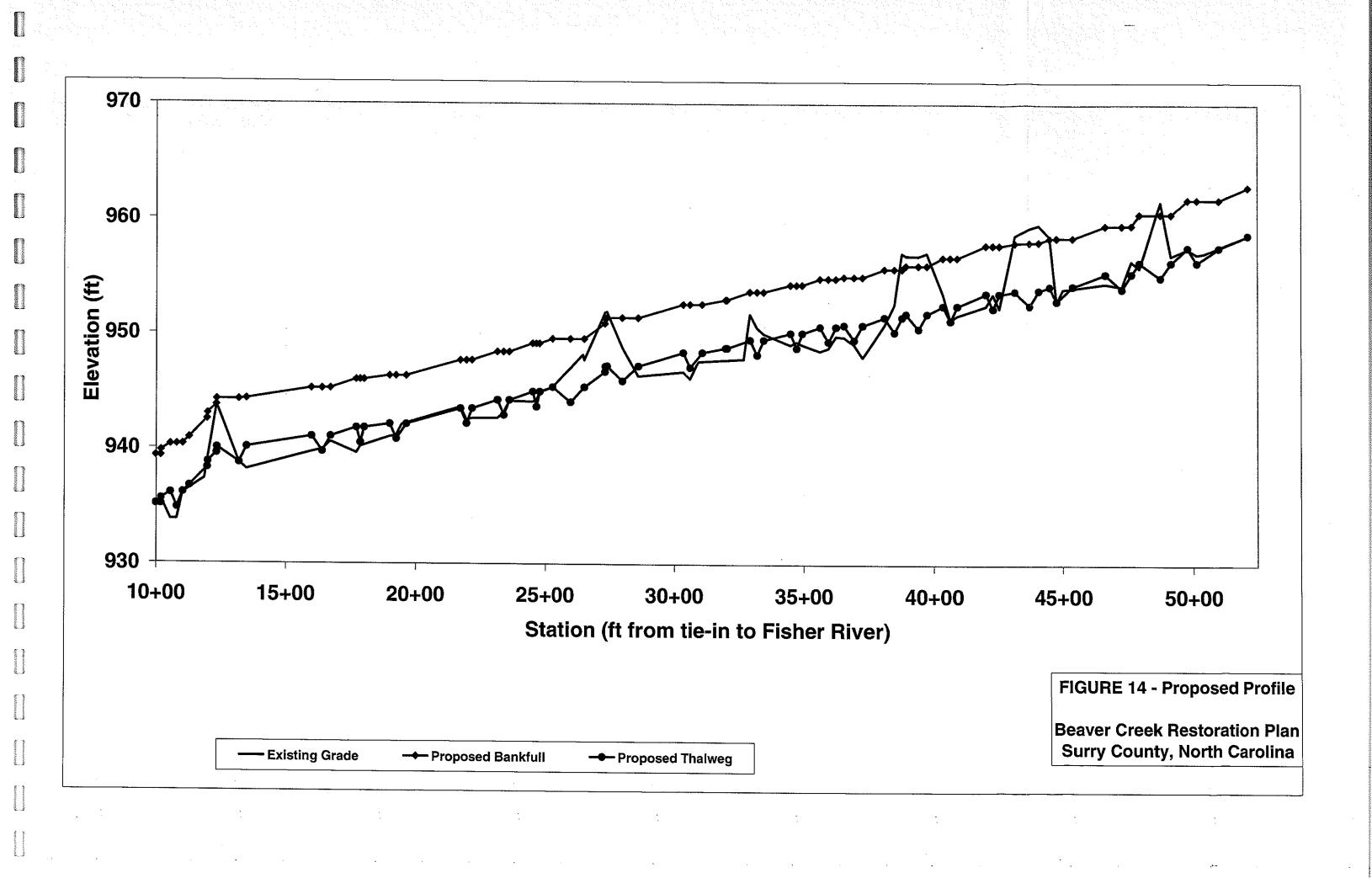




FIGURE 12 Typical Cross-Sections of New Channel

4.2 SEDIMENT TRANSPORT

A stable stream has the capacity to move its sediment load without aggrading or degrading. The total load of sediment can be divided into bed load and wash load. Wash load is normally composed of fine sands, silts and clay and transported in suspension at a rate that is determined by availability and not hydraulically controlled. Bed load is transported by rolling, sliding, or hopping (saltating) along the bed. At higher discharges, some portion of the bed load can be suspended, especially if there is a sand component in the bed load. Bed material transport rates are essentially controlled by the size and nature of the bed material and hydraulic conditions (Hey 1997).

Critical dimensionless shear stress $(\tau *_{ci})$ can be calculated using a surface and subsurface particle sample from a representative riffle in the reach. Since taking a subsurface sample is difficult, it is often estimated using the median grain size from a point bar sample. The sample is taken on the point bar face halfway between the thalweg and bankfull.

$$\tau *_{ci} = 0.0834 \left(\frac{d_i}{\hat{d}_{50}}\right)^{-0.872}$$

where, τ^*_{ci} =critical dimensionless shear stress $d_i=d_{50}$ of riffle bed surface from pebble count (mm) \hat{d}_{50} =subpavement d_{50} or bar d_{50} (mm)

A riffle bed surface pebble count was taken at a riffle on Beaver Creek using a method suggested by Angela Jessup of the Natural Resources Conservation Service, Yadkinville office. 100 particles were randomly selected along the wetted area throughout the entire length of a riffle. The riffle bed surface d50 was then calculated to be 27.5 mm. A subsurface sample was taken at the same riffle and sieved to determine the subsurface d50. The subpavement d50 was then calculated to be 10.7 mm. The data and particle distribution graphs can be found in Appendix B.

The critical dimensionless shear stress is then calculated as follows,

$$\tau *_{ci} = 0.0834 \left(\frac{27.5mm}{10.7mm}\right)^{-0.872} = 0.037$$

Critical dimensionless shear stress can then be used to predict the water depth required to move the largest particle found within the active channel, which is 70 mm or 0.23 ft for the Beaver Creek site. The water depth is calculated by:

$$d = \frac{(\tau *_{ci})(\rho_{sand} - \rho_{water})(D_i)}{s}$$

where, d=water depth (ft) τ^*_{ci} =critical dimensionless shear stress ρ_{sand} =density of sand (2.65 lb/ft³) ρ_{water} =density of water (1.0 lb/ft³) D_i =largest particle found in the bar sample (ft) s=average bankfull slope

Thus,

$$d = \frac{(0.037)(2.65\frac{lb}{ft^3} - 1.0\frac{lb}{ft^3})\left(\frac{70mm}{25.4\frac{mm}{in}*12\frac{in}{ft}}\right)}{0.0055\frac{ft}{ft}} = 2.5ft$$

For a critical dimensionless shear stress value of 0.037, the depth of water required to move a 70 mm particle was predicted to be 2.5 ft. The proposed channel dimensions have an average bankfull depth of 2.5 ft, with a maximum depth of 5.5 ft. This design provides the depth required to move the 70 mm particle found in the bar sample. The channel dimensions will provide sufficient shear stress to accommodate sediment transport.

Shear stress at the riffle was also checked using Shield's Curve. The shear stress placed on the sediment particles is the force that entrains and moves the particles, given by:

 $\tau = \gamma Rs$

where, τ=shear stress (lb/ft²) γ=specific gravity of water (62.4 lb/ft³) R=hydraulic radius (ft) s=average bankfull slope (ft/ft)

Hydraulic radius is calculated by:

$$R = \frac{A}{P}$$

where, R=hydraulic radius A=cross-sectional area (ft²) P=wetted perimeter (ft)

Thus,

$$R = \frac{70\,ft^2}{29.9\,ft} = 2.3\,ft$$

Wetted perimeter was measured off of a CADD file of the typical riffle cross-section drawn to scale.

Therefore,

$$\tau = (62.4 \frac{lb}{ft^3})(2.3ft)(0.0055 \frac{ft}{ft}) = 0.79lb / ft^2$$

The critical shear stress for the proposed channel has to be sufficient to move the D_{84} of the riffle bed material, which is 45 mm. Based on a shear stress of 0.79 lb/ft², Shield's Curve predicts that this stream can move a particle that is, on average, greater than 50 mm. Since the D_{84} was 45 mm and Shield's Curve predicts 50 mm, the proposed stream has the competency to move its bed load.

4.3 FLOODING ANALYSIS

This restoration site is in a FEMA/regulatory floodway zone and therefore, is subject to FEMA regulations. Currently there are no structures located in the floodway that would be impacted by floodplain alterations. The Priority 2 restoration of the stream will leave the stream's existing profile elevations essentially the same. A new floodplain will be established so that the active stream will be able to access it during larger storm events. Considering the type of restoration it is assumed that for smaller events the water surface elevations along the stream shall remain the same. During storms where the stream accesses the newly establishment floodplain the new water surface elevations are expected to be lower than the existing water surface elevations of storms of the same magnitude. The restoration will create neither positive nor negative water surface elevation changes during the larger storm events (greater than 50-year). HEC-RAS will be used to analyze both existing and proposed conditions once the design is completed. Sheer stress and flood stages will be compared between the two conditions to evaluate the design.

4.4 STRUCTURES

Several different structures made of natural materials will be installed along Beaver Creek. These structures include cross vanes, J-hook vanes, double wing deflectors, and root wads. Natural materials such as boulders, rocks and root wads will be used to create these structures from off-site sources.

4.4.1 Cross Vane

A cross vane structure serves to maintain the grade of the stream. The design shape is roughly that of the letter "U" with the apex located on the upstream side at the foot of the

ripple. Footer rocks are placed in the channel bottom for stability. Rocks are then placed on these footer rocks in the middle of the channel at approximately the same elevation as the ripple. On either side of the channel, rocks are placed at an angle to the stream bank, gradually inclining in elevation until they are located above the bankfull surface directly adjacent to the stream bank. Water flowing downstream is directed over the vane towards the middle of the channel. Rocks placed at the apex determine the bed elevation upstream. A cross vane is primarily used for grade control and to protect the stream banks.

4.4.2 Root Wads

The objectives of these structure placements are as follows: (1) protect the stream bank from erosion; (2) provide in-stream and overhead cover for fish; (3) provide shade, detritus, terrestrial insect habitat; (4) look natural, and (5) provide diversity of habitats (Rosgen 1996). A footer log and boulder are placed on the channel bottom abutting the stream bank along an outside meander that will provide support for the root wad and additional stability to the bank. A large tree root wad is then placed on the stream bank with additional boulders and rocks on either side for stability. Flowing water is deflected away from the bank and towards the center of the channel.

4.4.3 Double Wing Deflectors

Double wing deflectors are used to narrow the low flow channel in streams that are overwide. The structure is made of logs and a graded mixture of rocks. It creates a run bedform by narrowing the low flow channel thus reducing the possibility of central bars in an over-wide channel. The resulting channel has an improved sediment transport capacity and enhanced habitat. The long straight sections of Beaver Creek are excellent locations for double wing deflectors since the channel is over-wide and central bars are forming within the active channel.

Specific location of these structures will be determined during final design.

5.0 HABITAT RESTORATION

The restoration plan requires the establishment of riparian vegetation at the site. The proposed vegetation is described in the following sections.

5.1 Vegetation

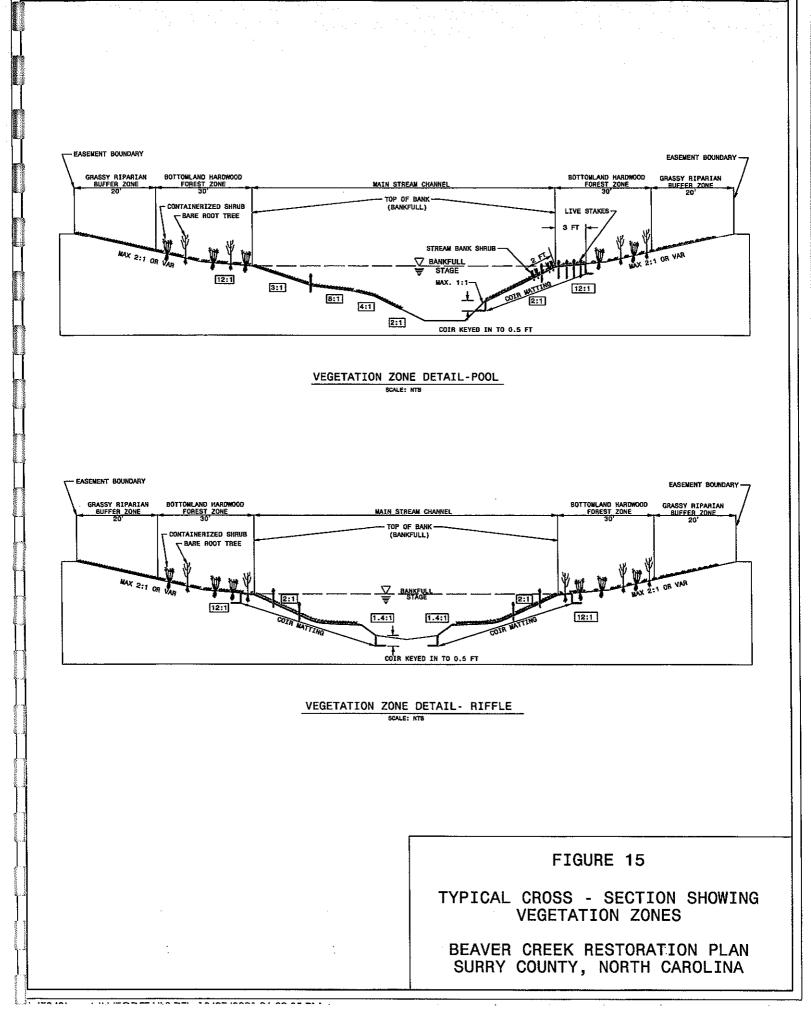
Vegetation that develops a quick canopy has extensive root system, and a substantial above-ground plant structure is needed to help stabilize the banks of a restored stream channel in order to reduce scour and runoff erosion. In natural riparian environments, pioneer plants that often provide these functions are alder, river birch, silky dogwood, and willow. Once established, these trees and shrubs create an environment that allows for the succession of other riparian species including ashes, black walnuts, red maples, sycamores, oaks and other riparian species.

In the newly restored stream channel, revegetation will be vital to help stabilize the stream banks and establish a riparian zone around the restored channel. Revegetation efforts on this project will emulate natural vegetation communities found along relatively undisturbed stream corridors. To quickly establish dense root mass along the channel bank, a native grass mixture will be planted on the stream bed and bank. Shrubs will be utilized on the stream bank and along the floodplain to provide additional root mass. Extra care will be given to the outside of the meander bends to ensure a dense root mass in those areas of high stress. Coir matting will be used to provide erosion protection until vegetation can be established. Along the tops of the channel banks, trees, shrubs and a native grass mixture will be planted.

A mixture of seeds, livestakes, bare root nursery stock, and transplants will be utilized to stabilize the banks. Proposed species to be planted include

Trees

Blackgum (Nyssa sylvatica) Black walnut (Juglans nigra) Ironwood (Carpinus caroliniana) River birch (Betula nigra) Sycamore (Platanus occidentalis) Persimmon (Diospyros virginiana)


Shrubs

Dog-hobble (Leucothoe sp.) Rhododendron (Rhododendron minum) Serviceberry (Amelanchier arborea) Silky dogwood (Cornus amomum) Silky willow (Salix sericea) Tag alder (Alnus serrulata) Winterberry (Ilex verticillata)

Herbs- Permanent seed mixture

Gramminoids

Bluestem (Andropogon glomeratus) Tussock sedge (Carex stricta) River oats (Chasmanthium latifolium) Virginia wildrye (Elymus virginicus) Deertongue (Panicum clandestinum) Silver plumegrass (Saccharum alopecurodium) Little blue stem (Schizachyrium scoparium) Woolgrass (Scirpus cyperinus)

Other herbaceous vegetation Cut-leaved coneflower (*Rudbeckia laciniata*) Wrinkle leaved goldenrod (*Solidago rugosa*) Ironweed (*Vernonia noveboracensis*).

Woody vegetation will be planted between February and May to allow plants to stabilize during the dormant period and set root during the spring season. In the areas where invasive and exotic species are located, during construction and monitoring control by removal or appropriate herbicides will be implemented to prevent competition with the revegetation efforts.

5.2 Riparian Buffers

Two different types of riparian buffers will be utilized to vegetate the floodplain. In areas that are not currently being farmed any areas disturbed will be replanted with bottomland hardwood forest vegetation to the existing tree line. In areas that are currently being farmed or in pasture two separate zones will be established (Figure 15). The inner zone will extend for a distance of 30 feet from the top of bank and will be planted with bottomland hardwood forest vegetation. The outer zone will extend and additional 20 feet and will be planted with grassy herbaceous vegetation.

5.2.1 Bottomland Hardwood Forest

The inner forested zone will contain dominant vegetation similar to the Piedmont/Low Mountain Alluvial Forest community type described in Classification of the Natural Communities of North Carolina: Third Approximation (Schafle and Weakly 1990). Proposed species to be planted include trees, shrubs and permanent seed mixture listed under Streambank Vegetation (Section 6.1).

5.2.2 Grassy Riparian Buffer

The grassy buffer area will consists only of native grasses and herbaceous vegetation to slow and filter runoff from the adjacent farmed areas. Proposed species to be planted are listed in the permanent seed mixture listed under Streambank Vegetation (Section 6.1).

5.2.3 Temporary Seeding

A temporary seed mixture will be applied to all disturbed areas immediately after construction activities have completed. This temporary seed mixture will provide erosion control until permanent seed can become established.

6.0 MONITORING

6.1 STREAM CHANNEL

Monitoring of the stability of the channel is recommended to occur approximately 6 months after restoration is complete or after bankfull (or greater) events and should continue annually for a period of 3 to 5 years. Monitoring practices may include, but are not limited to, installing bank erosion pins and a toe pin, monumented cross-sections, scour chains, macroinvertebrate studies, longitudinal profiles, conducting the bank erosion hazard rating guide and establishing photo reference points. The purpose of monitoring is to determine bank stability, bed stability, morphological stability and overall channel stability. Table 4, below, can be used for selecting practices.

Table 4.Stream Monitoring Practices

PRACTICE	STABILITY ASSESSMENT
Bank Erosion Pins with Toe Pin	-Lateral or bank stability
Monumented Cross-Section	-Vertical or bed stability
	-Lateral or bank stability
Scour Chains	-Vertical or bed stability
	-Scour depth for a particular storm
Scour Chain w/ Monumented	-Vertical or bed stability
Cross-Section	-Sediment transport relations
	-Biological interpretations
Longitudinal Profile	-Channel profile stability
Bank Erosion Hazard Guide	-Bank erosion potential
Photo Reference Points	-Overall channel stability
Macroinvertebrate Studies	-Biological indication of water
	quality

6.2 VEGETATION

Prior to planting, the site will be inspected and checked for proper elevation and suitability of soils. Availability of acceptable, good quality plant species will be determined. The site will be inspected at completion of planting to determine proper planting methods, including proper plant spacing, density, and species composition.

Competition control will be implemented if determined to be necessary during the early stages of growth and development of the tree species. Quantitative sampling of the vegetation will be performed between August 1 and November 30 at the end of the first year and after each growing season until the vegetation criteria is met.

In preparation for the quantitative sampling, 50 by 50 feet (0.05-acre) vegetative plots will be established in the reforested area. Plots will be evenly distributed throughout the

site. For each plot, species composition and density will be reported. Photo points will be taken within each zone. Monitoring will take place once each year for five years.

Success will be determined by survival of target species within the sample plots. At least six different representative tree species should be present on the entire site. If the vegetative success criteria are not met, the cause of failure will be determined and appropriate corrective action will be taken.

6.3 MACROINVERTEBRATES

A monitoring period of 3 to 5 years is commonly suggested to determine changes in macroinvertebrate populations within a newly restored stream. The North Carolina Wetlands Restoration Program will determine a macroinvertebrate monitoring policy.

7.0 **REFERENCES**

Amoroso, J.L., ed. 1999. Natural Heritage Program List of the Rare Plant Species of North Carolina. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment and Natural Resources. Raleigh, North Carolina.

Cowardin, L.M., V. Carter, F.C. Golet and E.T. LaRoe. 1979. *Classification of Wetlands and Deepwater Habitats of the United States.* U.S. Fish and Wildlife Service, Office of Biological Services, FWS/OBS-79/31. U.S. Department of the Interior, Washington, DC.

Choate, J.R., J.K. Jones, Jr., and C. Jones. 1994. Handbook of Mammals of the South-Central States. Louisiana State University Press, Baton Rouge, Louisiana.

Doll, B. A., et al. 2000. Hydraulic Geometry Relationships for Urban Streams throughout the Piedmont of North Carolina. American Water Resources Association.

Godfrey, R.K., and J.W. Wooten. 1979. Aquatic and Wetland Plants of Southeastern United States. Monocotyledons. The University of Georgia Press, Athens, Georgia.

Godfrey, R.K., and J.W. Wooten. 1981. Aquatic and Wetland Plants of Southeastern United States. Dicotyledons. The University of Georgia Press, Athens, Georgia.

Harrelson, Cheryl, C.L. Rawlins and John Potyondy. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. United States Department of Agriculture, Forest Service. General Technical Report RM-245.

Hey, Richard and Dave Rosgen. 1997. Fluvial Geomorphology for Engineers. Wildland Hydrology, Pagosa Springs, Colorado.

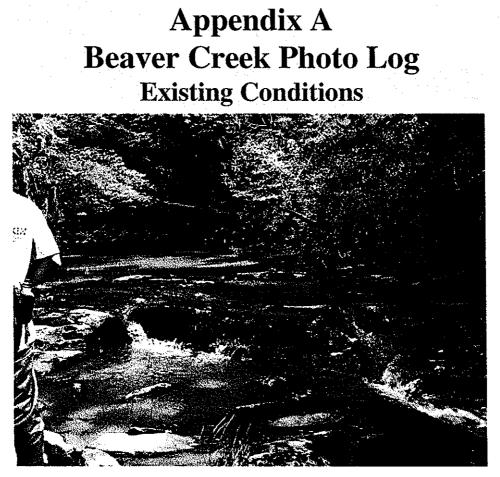
LeGrand, H.E., Jr. and S.P. Hall, eds. 1999. *Natural Heritage Program List of the Rare Animal Species of North Carolina*. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment and Natural Resources. Raleigh, North Carolina.

NCDENR. "Water Quality Stream Classifications for Streams in North Carolina." Water Quality Section. http://h2o.enr.state.nc.us/wqhome.html (16 July 2001).

Radford, A.E., H.E. Ahles and G.R. Bell. 1968. Manual of the Vascular Flora of the Carolinas. The University of North Carolina Press, Chapel Hill, North Carolina.

Rosgen, Dave. 1997. A Geomorphological Approach to Restoration of Incised Rivers. Wildland Hydrology. Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision. **AND AND A**

And the second second


Montopy of

Schafale, M. P. and A. S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program. Raleigh, North Carolina

United States Department of Agriculture – Soil Conservation Service. December, 1977. "Soil Survey of Guilford County, North Carolina." US Government Printing Office, Washington, DC.

United States Fish and Wildlife Service. "Region 4, Southeast Region/Endangered Species." North Carolina Ecological Services. http://nc-es.fws.gov/ (August 2001).

USDA, NRCS. 2001. The PLANTS Database, Version 3.1 (http://plants.usda.gov). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.

And the second s

AND DESCRIPTION OF THE OWNER OWNER OWNER OWNER

Statute and a state

Garrens code di

All sectors in the sector

Koveroexister

ünteteskondes end

Although the control of the

Picture 1. Bedrock outcropping near the start of the project.

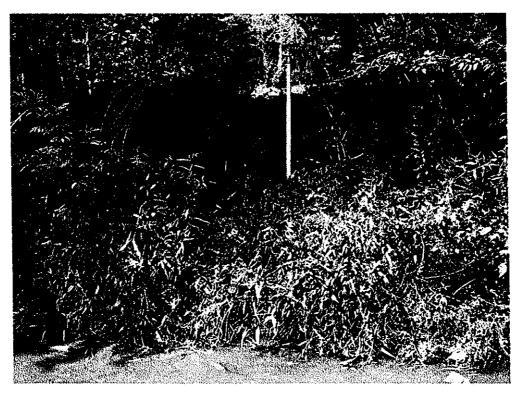
Picture 2. Riffle cross-section at station 58+00.

Picture 3. Run cross-section at station 56+50.

Construction of the local division of the lo

Physical Contraction of the Cont

Contraction of the second


Construction of the second

Survey Assessed

Construction

Martin Accounting

And the second s

Picture 4. Bankfull Bench at run cross-section.

Picture 5. Pool cross-section at station 52+40.

State of Color

Stantana and

Enterocontration (12)

Control of Stationary

Announce wash

And a second second second

And the second s

Picture 6. Point bar of pool cross-section.

Picture 7. Riffle cross-section at station 46+00 with central bar.

Contraction of the second

(and a second second


Annual Constants

(Sourcesson)

And and a constants

antico antico de la composición de la composició

Property second

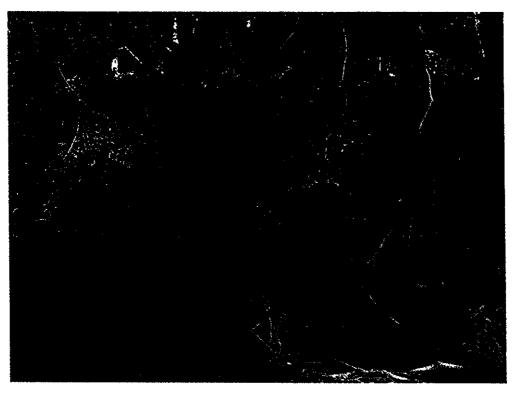
Picture 8. Pool cross-section at station 33+30.

Picture 9. Pool cross-section at station 17+20.

Second Color

Contraction in a contraction of the contraction of

And a second second


Contraction of the second

Anton warmen

(1993) and a substantial sector of the substantial sector sector

Automotion of the

and a second sec

Picture 10. Pool cross-section at station at 13+20.

Picture 11. Existing bridge to be replaced.

and a second sec

encontronses

ALCONTRACTOR ACCOUNTS

Contraction of the second

Concentration of the second

Capazia and a second

And a second sec

Strandvender

Picture 12. Eroding bank with exposed roots.

Contraction of the second

Construction of the

Consection of the

Photosococce and a second

ACCURATE AND ADDRESS OF

A CONTRACTOR OF A CONTRACT

Party or second second

Picture 14. Overwidening channel with debris jam and central bar.

Picture 15. Mass wasting along one side of a central bar.

Nuclear Sources

(and a second second

AUGULATION CONTRACTOR

Contraction (Color)

Non-the second

ALCOLLARGE AN

AND DESCRIPTION OF

, married

Picture 16. Central bar, typical throughout the mitigation site.

Summary of Cross Section Data

and the

-

diameter matrix

diaman and

With a service of the service of the

Sinton passon of

CLONESSON CONTRACTOR

Lotionsonovanite

(1995) And and a second

And a second second

Prepared By:	Ben Goetz, Dan Clinton and George Lankford
River Basin:	Yadkin-Pee Dee
Watershed:	Beaver Creek
Stream Reach:	
Drainage Area (sq mi):	5.9
Date:	8/25/2001

Parameter				Cross Sectio	n	······································		
	101	102	103	104	105	106	107	108
Station	58+00	56+50	13+20	17+20	24+60	33+30	46+00	52+40
Feature	Riffle	Run	Pool	Pool	Riffle	Pool	Riffle	Pool
Stream Type	С	F	F	F	G	F	F	F
Bankfull Width, Wbkf (ft)	37.5	28.7	35,3	28.3	27.0	35.9	29.2	34.5
Bankfull Mean Depth, Dbkf (ft)	2.4	2.2	3.2	2.2	2.8	1.3	1.8	2.4
Width/Depth Ratio, Wbkf/Dbkf	15.7	13.1	10.9	12.7	9.5	27.5	16.0	14.6
Bkf Cross Sec Area, Abkf (sq ft)	89.7	63.1	113.9	63.0	76.4	46.8	53.3	81.5
Bank Height Ratio	1.6	2.0	1.7	2.5	2.0	2.0	2.4	1.8
Bankfull Maximum Depth, Dmax (ft)	3.3	3.3	5.3	4.1	3.3	3.8	2.5	4.2

Beaver Creek Stream Restoration Wetlands Restoration Program

	Prepared By: River Basin: Watershed: Cross Section #: Drainage Area (sq mi): Date: Station: Feature:		Julie Elmore, 1 Yadkin-Pee De Beaver Creek 101 5.9 8/27/2001 S8+00 Riffle		a Clinton and	George Lankford			·																
	Station	Hi Feet	FS Feet	Elevation Feet	Notes																				
	0,0	100.00	0.00	100.00																					
	3.0	100.00	0.21	99.79																					
	8.0	100.00	1.16	98.84																					
	12.0	100.00	3.06	96.94			ydraulic (
•	15.0	00.001	3.97	96.03		Width	Depth		_																
	16.5	00.001	4,96	95.04		Feel	Feet	Sq. Ft																	
	17.6	100,00	6.63	93.37											С	ross Se	ction	#101	- Riff	le					
	19,0	100,00	7.00	93.00	LBKF	0.0	0.00	0						Bea	aver	Creek S	Stream	n Res	torat	ion Si	te				
	21.0	100.00	7,30	92.70		2.0	0.30	0.30	1					_											
	23.3	100.00	7.83	92.17		2.3	0.83	1.30	100	1 m							T		<u> </u>	<u> </u>	·				
	25.5	100.00	8,92	91.08		2,2	1.92	3.03							1		1								
	26.3	100.00	9.24	90.76		0.8	2.24	1.66	98								1								-
	27.3	100.00	9.32	90.68		1.0	2.32	2.28				J	ł				1			- i					
	28.3	100.00	9.71	90.29	LEW	1.0	2.71	2.52	£ 96	╡╋┯╍┥	_	╈╌╼┝╸	~~			┈┥╾╴	-f	1				┽╍╍┽╍	╶┼╼┈┽╴	-+-	~~
	31,0	100,00	9,85	90.15		2.7	2.85	7.51	ភ្ល							1	1	1				┼╌╌┼╌	╼╋╼╌┼╸		
	38.0	100.00	9.76	90.24		7.0	2.76	19.64	월 94	+		┼╲┿			- Flo	od Pron	e		*			╋╍┼─	╺╋╾╴┼		_
	40.0	100.00	9,86 -	90.14		2.0	2.86	5.62	N S			•			- 1	1	1		±		1	1 1		1	
	43.0	100.00	9,71	90.29		3.0	2.71	8.36	Elevation 58	+-+-		+	₩.	┉┉╞╍┙			<u> </u>	┟╼╌╍┦	Z			╉═╼╍╌┟╴╴	┿╾┼	_	
	49.5	100.00	10,30	89.70	т₩	6.5	3.30	19.53						_ I	1	Bankfull									
	52.3	100.00	10.05	89.95		2.8	3.05	8.89	90	+					_	-	+							_ <u> </u>	
	54.1	100.00	9.65	90.35	REW/WS	1.8	2.65	5.13								1		1 (ļ						
	54.7	100.00	9.19	90.81		0.6	2.19	1.45	69	<u></u>							<u> </u>	ļ ļ				<u> </u>			
	55.2	100.00	9,98	90.02		0.5	2.98	1.29		0.0	10.0	20,0		30.0		40.0	£	D.O	60.	٨	70.0	80.0	90.0		160.0
	55.5	100.00	8.00	92.00		0.3	1.00	0.60		0.0	10.0	20,0		00.0						•	10.0	30.0	50.0	,	100.0
	56,3	100.00	7.43	92.57		0.8	0.43	0.57									Distar	nce (fi)						
	56.5 56.9	100.00	7.00	93.00 94.24	RBKF	<u>0.2</u> 37.5	0.00 SUM	0.04 89.71	_			~					_		_						
	58,Q	100.00	5.76 5.33	94.24 94.67		37.5	SOW	89.71																	
	58.0	100.00	4,88	94.67	RTOB	Summary D	ata																		
	71.0	100.00	4.88	95,12	¥100	Summary U	<u>914</u>																		
	86.0	100,00	4.75	95.27		BKF A	69.7	sq fi	NC Regional C	unue (Du	-all														
	96.0	100.00	5,34	94.66		BKF W	37.5	sy n It	Watershed Size		au) 6.0	sg mi													
	121,0	100.00	5.26	94.00		Maxd	3.3	11. 11.		8ki Area	72.5	sq mi sq ft													
	146.0	100.00	4,21	95.79		Mean d	2.4	it.		Bki Width	27.0	sq n ft		2											
	171.0	100.00	2.95	97.05		W/D Ratio	15.7	n.		ski vyiugi Ski Depih	27.0	ft													
	190.0	100.00	1,74	97.05		FPW	156.0	арргох.	4	CN#	<i>~1</i>														
	211.0	100.00	0.55	99.45		Entreachment Ratio	4.16	appine	-	lischarge	323.5	cís													
	211,0	NAM	0.53	22.43		Stream Type	4.16 C		L	naci inti 98	363.9	us													
						atream (Aba	~																		

ЕАКТН **Э**ТБСН

Е А, В Т Н **Э**тесн

BANK EROSION POTENTIAL

uate:	8/27/2001
Stream:	Beaver Creek
Feature:	Riffle
Station:	101
Notes:	In more stable section near bedrock
operate	

CRITERIA	VE	RY LOW	LO	W	MODE	RATE	HIC	iH	VERY	HIGH	EXT	REME		
	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	PARAMETERS VALUE SCORSERVED AS	A CORD
Sank Heighi Ratio												1		' I
(Bank HI/8KF HI)	1.0 - 1.1	1.0 - 1.9	1.1 - 1.19	2.0 - 3.9	1.2 1.5	4.0 - 5.9	1.6 - 2.0	6.0 - 7.9	2.1 - 2.8	8.0 - 9.0	> 2.8	10	2	7.9
Root Depth/Bank Ht	1.0 - 0.9	1.0 - 1.9	0.89 - 0.50	2.0 - 3.9	0.49 - 0.30	4.0 - 5.9	0.29 - 0.15	6 <u>.0 - 7.9</u>	0.14 - 0.05	8.0 - 9.0	< 0.05	10_	0.55	3.5
 Root Density (%) 	80 - 100	1.0 - 1.9	55 - 79	2.0 - 3.9	30 - 54	4.0 - 5.9	15 - 29	6.0 - 7.9	5 - 14	8.0 - 9.0	< 5.0	(10	25	7.5
Bank Angle (Degrees)	0-20	1.0 - 1.9	21 - 60	2.0 - 3.9	61 - 80	4.0 - 5.9	8 <u>1 - 90</u>	6.0 - 7.9	<u>91 - 119</u>	8.0 - 9.0	> 119	10	80	5.9
Surface Protection (%)	80 - 100	1 <u>.0 - 1.9</u>	55 - 79	2.0 - 3.9	30 - 54	4.0 - 5.9	15 - 29	6.0 - 7.9	10 - 15	8.0 - 8.0	< 10	10	11	9.0
TOTALS		5.0 - 9.5		10 - 19.5		20 • 29.5		30 - 39.5		40 - 45		46 - 50	Sub-total: Adjustments:	33.8 0

Adjustments

Bedrock - Bank Eroslon Potential Always Very Low Boulders - Bank Eroslon Potential Always Low Gravel - Adjust value up by 5 to 10 points depending on composition of sand Sand - Adjust values up by 10 points

TOTAL 33.8 Bank Erosion Potential: High Acres 6

Stratification - 5 to 10 point upward adjustment depending on location of layers

Prepared By: River Basin: Watershed: Cross Section #: Drainage Area (sq mi) Dale; Station: Feature:	:	Julie Elmore, Be Yadkin-Pee Dee Beaver Creek 102 6,0 8/27/2001 56+50 Run		Clinton and	Georg	e Lan)	(ford									
Station	Hi Feet	FS Feet	Elevation Feet	Notes			•									
0.0 11.0 15.0 20.0	100.00 100.00 100.00 100.00	5.30 4.75 4.99 4.75	94.70 95.25 95.01 95,25				BKE	Hydraulic -	Geometry			Summary (7444			
25,0	100.00	5.16	94.84	LTOB			Width	Depth			-	Solumery 1	Jara			
27.5	100.00	6,20	93.80	LIUB			Feet	Feet	Sg.			8KF A	63.1	sqit		
29.5	100.00	7.14	92.86				1.601			FL.		BKFW	28.7	sqn. ft		
30.0	100.00	8.36	91.64	LBKF			0.0	0.00	0			Maxd	3.3	n ft		
31.0	100.00	8.83	91.04	LBKP			1.0	0.00	0.2			Mean d	2.2	n ft		
												W/D Ratio		π		
32.5	100.00	9.79	90.21				1.5	1.43	1.4			WID Hallo	13.1 62.0			
33.1	100.00	10.25	89.75				0.6	1.89	1.0					approx.		
34.0	100,00	10,71	89.29				0.9	2.35	1.9			ment Ratio	2.16			
34.5	100.00	11.00	89.00	LEW/WS			0.5	2.64	1.2			ream Type	F			
37.0	00.001	11.32	88.68				2.5	2.96	7.0		Bank He	elght Ratio	2.0			
39,0	100.00	11.47	88.53				2.0	3.11	6.0							
43.0	100.00	11.55	88.45				4.0	3.19	12.0							
45.2	100.00	11.61	88.39	τw			2.2	3.25	7.0	8		NC Regiona		Rural)		
48,0	100,00	11.23	88.77				2.8	2.87	8,5	7	1	Walershed S	Size	6.0	sq ml	
48.9	100.00	11.34	88.66				0.9	2.98	2.6	3			Bkf Area	72.5	sqift	
49.8	100.00	11,00	89.00	REW/WS			0.9	2.64	2.5	3			Bkf Width	27.0	ť.	
51.0	100.00	10.20	89.80				1.2	1.84	2.6	9			Bkf Depth	2.7	Ŕ	
53.5	100.00	9.71	90.29				2.5	1.35	3,9	9			CN #			
54.6	100.00	9.72	90.28				1.1	1,36	1,4	9			Discharge	323.5	cfs	
57.0	100.00	8.85	91.15				2,4	0.49	2.2				•			
58.7	100.00	8.45	91.64	RBKF			1.7	0.00	0.42							
60.7	100.00	7.50	92.50			•	28.7	SUM	63.1							
61.3	100.00	4.97	95.03		·····											
62.5	100.00	4.35	95,65	RTOB						0.00	CC Contin	эл #102 -	Due			
68,0	100.00	4.62	95.38		1											
74.0	100.00	5.15	94.85						pea	iver Gr	eek Sirea	am Resto	ration 5	110		
84,0	100.00	4.96	95.04			100 -	Ţ	<u> </u>	1		- T				<u> </u>	
90.0	100.00	4.46	95.54			98 ·	ļ		ļ							
110.0	100.00	1,19	98.81						1	ł						
135.0	100,00	0.65	99.35		ΙĔ	96 -	í—							-		
					c .	94				P	ood Prone		17			-
					1 😫	- •		1	5	<u> </u>		1	- U			
					Elevation (ft)	92		┢╾───╸	<u> </u>	<u>.</u>	• ~ – – – ankfull					
					<u> </u>	90 -				N "	annun İ	- 1. A.				
					(ш	ອບໍ			[2	1			- T
					1	88 -				+		<u> </u>				
										1						1
	1					86 -		+								
						0	} 1	0 2	0 3	30	40	50	60	70	80	90
			÷		ĺ						Dist	tance (ft)				

.

E A R T H 🌒 T E G H

100

TOTAL

Bank Erosion Potential: High

33.8

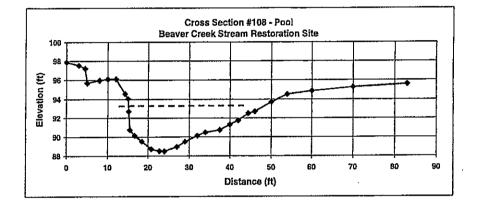
BANK EROSION POTENTIAL

	Date:	8/27/2001													
	Stream:	Beaver Cree	ek												
	Feature:	Run													
	Station:	102													
	Notes:	in area wher	e stream was p	proviously wide	r and has n	ow narrowed									
	CRITERIA	VER	YLOW	LO	w	MODE	RATE	ню	SH	VERY	HIGH	EXT	REME		
		VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	ACORSERVED	RESCORE
	Bank Height Ratio (Bank HI/BKF Ht)	1.0 - 1.1	1.0 - 1.9	1.1 - 1.19	2.0 • 3.9	1.2 - 1.5	4.0 - 5.9	1.6 - 2.0	6.0 - 7.9	2.1 - 2.8	8.0 - 9.0	> 2.8	10	2	7.9
,	Root Depth/Bank Ht	1.0 - 0.9	1.0 - 1.9	0.89 - 0.50	2.0 - 3.9	0.49 - 0.30	4.0 - 5.9	0.29 - 0.15	6.0 - 7.9	0.14 - 0.05	8.0 - 9.0	< 0.05	10	0.55	3.5
	Root Density (%)	80 - 100	1.0 - 1.9	55 - 79	2.0 - 3.9	30 - 54	4.0 - 5.9	15-29	6.0 - 7.9	5 - 14	8.0 - 9.0	< 5.0	10	25	7.5
	Bank Angle (Degrees)	0-20	1.0 - 1.9	21 - 60	2.0 - 3.9	61 - 80	4.0 - 5.9	81 - 90	6.0 - 7.9	91 - 119	<u> 8.0 - 9.0</u>	> 119	10	80	5.9
	Surface Protection (%)	80 - 100	1.0 - 1.9	55 - 79	2.0 - 3.9	30 - 54	4.0 - 5.9	15 - 29	6.0 - 7.9	10 - 15	8.0 - 9.0	< 10	10	11	9.0
	TOTALS	·	5.0 - 9.5		10 - 19.5		20 - 29.5		30 - 39.5		40 - 45		46 - 50	Sub-total:	33.8
														Adjustments:	0

Adjustments

Badrock - Bank Erosion Potential Always Vary Low Boulders - Bank Erosion Potential Always Low Graval - Adjust value up by 5 to 10 points depending on composition of sand Sand - Adjust values up by 10 points

Stratilication - 5 to 10 point upward adjustment depending on location of layers


елятн 🎒 тесн

.

Prepared By: River Basin: Watershed: Cross Section #: Drainage Area (sq ml); Date: Station: Feature:		Ben Goetz, Dan G Yadkin-Pee Dee Beaver Crock 108 6.0 8/27/2081 52+40 Pool	Linton and C	George Lankford
Station	HI Feet	FS Feet	Elevation Feet	Notes
0.0	100.00	2,13	97.87	
3.0	100.00	2.46	97.54	
4.5	100.00	2.78	97.22	
5.0	100.00	4,30	95.70	
8.0	100.00	4,03	95.97	
10.0	100.00	3.90	96.10	
12.0	100.00	3.89	96,11	
14.3	100,00	5.43	94.57	
15.0	100,00	5,94	94.06	
15.2	100,00	7.30	92.70	LBKF
15.5	100.00	9.24	90,76	
16.7	100.00	9,85	90.15	LEW
18.5	100.00	10.46	89.54	
20.8	100.00	11.30	88.70	
22.8	100.00	(1.49	88.51	
24,0	100.00	11.52	88.49	τw
27.0	100.00	11,04	86.95	
29.0	100.00	10.48	89.52	
32.0	100.00	9.86	90.14	REW/WS
34.0	100,00	9.50	90.50	
37.5	100.00	9.25	90.75	
40.0	100.00	8.68	91.32	
42.0	100.00	8,26	91.74	
44,4	100.00	7.49	92.51	
46,0	100.00	7.30	92.70	RBKF
50,0	100.00	6.29	93.71	
54.0	100.00	5.47	94.53	RTOB
60.0	100.00	5.14	94.86	
70.0	100.00	4.72	95.28	
83.0	100.00	4.40	95.60	

BKEH	ydraulic Ge	ometry
Width	Depth	Area
Feet	Feet	Sq. FL
0.0	0.00	0
1.2	1.94	1.16
1.8	2.55	4.04
2.3	3.16	6.57
2.0	4.00	7.16
1.2	4.19	4.91
3.0	4.22	12.62
2.0	3.74	7.96
3.0	3,18	10.38
2.0	2.56	5.74
3.5	2.20	8.33
2.5	1.95	5.19
2.0	1.38	3.33
2.4	0.96	2.81
1.6	0.19	0.92
4.0	0.00	0.38
34.5	SUM	81.5

Summary Da	<u>ta</u>	
8KF A	81.5	sq fl
BKF W	34.5	ft
Max d	4.2	ft
Mean d	2.4	ft
W/D Ratio	14.6	
Stream Type	۶	
Bank Height Ratio	1.8	

E A R T H 🐑 T E C H

е л в т н 🌍 т е с н

BANK EROSION POTENTIAL

Dale:	8/27/2001
Stream:	Beaver Creek
Feature:	Pool
Station:	108
Notes:	Big meander near the beginning of the project

CRITERIA	VER	Y LOW	10	W	MODE	RATE	HIG	н Н	VERY	HIGH	EXT	REME	VALUE OF	
	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	COBSERVED S	SSCORE 2
Bank Height Ratio (Bank Ht/BKF Ht)	1.0 - 1.1	1.0 - 1.9	1.1 - 1.19	2.0 - 3.9	1.2 - 1.5	4.0 - 5.9	1.6 - 2.0	6.0 - 7.9	2.1 - 2.8	8.0 - 9.0	> 2.8	10	1.8	7.0
Root Depth/Bank Ht	1.0 - 0.9	1.0 - 1.9	0.89 - 0.50	2.0 - 3.9	0.49 - 0.30	4.0 - 5.9	0.29 - 0.15	6.0 - 7.9	0.14 - 0.05	8.0 - 9.0	< 0.05	10	0.15	7.9
Root Density (%)	80 - 100	1.0 - 1.9	55 - 79	2.0 - 3.9	30 - 54	4.0 - 5.9	15 - 29	6.0 - 7,9	5-14	8.0 - 9.0	< 5.0	10	5	9.0
Bank Angle (Degrees)	0-20	1.0 - 1.9	21 - 60	2.0 - 3.9	61 - 80	4.0 - 5.9	81 - 90	6.0 - 7.9	91 - 119	8.0 - 9.0	> 119	10	60	3.9
Surface Protection (%)	80 - 100	1.0 - 1.9	55 - 79	2.0 - 3.9	30 - 54	4.0 - 5.9	15 - 29	6.0 - 7.9	10 - 15	8.0 - 9.0	< 10	10	5	10.0
TOTALS	-	5.0 - 9.5		10 - 19.5		20 - 29,5		30 - 39.5		40 - 45		46 - 50	Sub-total: Adjustments:	37.8 0

Adjustments

Bedrock - Bank Erosion Potential Always Very Low Boulders - Bank Erosion Potential Always Low Gravel - Adjust value up by 5 to 10 points depending on composition of sand Sand - Adjust values up by 10 points

TOTAL 37.8 Bank Erosion Potential: High

Stratification - 5 to 10 point upward adjustment depending on location of layers

Orainag Date: Station: Feature	asin: hed: lection #: le Area (sq mi):	Hi Feet 100.00 100.00	Ben Goetz, I Yadkin-Pee Beaver Cree 107 6.0 8/27/2001 46:400 Rime FS Feat 4.52 5.04 4.61	Dee	und George Lu Notes	nkford																				
	27.0	100.00	4.95	95.05																						
	31.0	100.00	4,81	95.1 9	LTOB							aomai				Su	mma	ry Da	ta							
	33.0	100.00	5.37	94.63				Wid			pth		rea													
	35,0	100.00	6.84	93.16				Fee	t	F	eet	S	q. Ft.				FA		53.3	sq	ft					
	36.0	100,00	7.5R	92.42													FW		29.2	ft						
	37.0	100.00	8.27	91.73	LBKF			0.0			00		٥				w.d		2.5	ft						
	37.7	100.00	8.92	91.08				0.7			65		.23				an d		1.8	ft						
	37,9	100.00	10.46	89.54	LEW			0.2			19		1.28				D Rat	iQ	16.0							
	40.6	100.00	10.57	89.43				2.7			30		.06			FP			34.4	ар	prox.					
	45.5	100.00	10.31	89.59	Start of centra	ıl bar		4.9			04		0.63		Entren				1.2							
	47.0	100.00	9.59	90.41				1.5			32		.52				un Tyj		F							
	50.5	100.00	9.67	90.33				3.5			40		.76		Bank	c Helg	ht Rai	io	24							
	51.4	100.00	10.14	89.86				0.9		1.			.47													
	56.7	100.00	10.03	89.97				5.3		1.			.62				_									
	58.9	100.00	10.18	89.82	ead of central	har/WS		22		1.			.04						Curve	Run						
	60.0	100.00	10.25	89.75				1.1		1.			.14			Wa	te <i>r</i> she				6.0	sq				
	61.8	100.00	10.59	89.41				1.8		2.3			.87						3ki Area		72.5	sq	ft			
	63.3	100.00	10.73	89.27	TW			1.5		2.4			.59						kî Widti		27.0	ft				
	64.7	100.00	10,34	89.66	REW			1.4		2.0			.17					B	d Depti		2.7	ft				
	64.9	100.00	9.18	90.82				0.2		0.9			.30						CN #							
	66.0	100.00	8.41	91.59				1.1		0.			58					Di	scharge	•	323.5	cís				
	66.2	100.00	8,27	91,73	RBKF		-	0.2		0.0			.01	-												
	66.3	100.00	7.98	92.02				29,2	<u>!</u>	SU	IM .	53	.27													
	67.0 67.4	100.00	7.72	92.28																						
		100.00	4.96	95.04										C	ross	Sect	lon i	ŧ107	- Riff	e						
	70.0 78.0	100,00	4,32	95.68	RTOB								Be	aver	Cree	k St	ream	Res	storati	on :	Site					
	78.0	100,00	4.83	95.17			- 89																			
	95.0	100.00	4,93 4,55	95.07			7° 7							Γ	1											1
	03.0	100,00	4,55	95.45 95.90																		1				
•	.03.0	100,00	4.10	95.50		9	ю -							ł	i	!			┼───┦					+		
						£	- 1			-		•	-	₩		_					1		-+	+		
•						Elevation (ft)	4							5				· - ·	⊤−⊥						1	
•						1 5 1		i i	1)		Flood	Pro	16				[[[
						at	_								\									1		
						<u>}</u> 9 9	12 -							·	A I			Ba	nkfull	_	5	<u> </u>		†		
						υï	- 1		1						🛉						¥	.		1		
						[9	a -		ļ-							<u> </u>		S	╎┿╼╈	_	<u> </u>		<u> </u>	 	<u> </u>	
		4											i		-		-	•	I T	**	1					
	*					8	яİ																			
						°		·	10.0	·		•	30		40	^			-					,		
							0.0	U	10.0		20	.0	30		40		50		60.0	,	70	.0	8	0.0	90	.0
1.11	· · · · ·				1											Di	istan	ce (1	ft)							
•																										

E A R T H 🌍 T E G H

100.0

е А R T B 🐑 T Е С Н

BANK EROSION POTENTIAL

	Dale: Stream: Feature: Station:	8/27/2001 Beaver Cre Riffle 107	eek								*.				
	Notes:	VED	LOW	LO	167	MODE	DATE	Ніс		VERY	нсн	FX	REME		
	CAITERIA	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	A VALUE VORSERVED	COSCORE 2
	Sank Height Ratio (Bank HI/BKF Ht)	1.0 - 1.1	1.0 - 1.9	1.1 - 1.19	2.0 - 3.9	1.2 - 1.5	4.0 - 5.9	1.6 - 2.0	6.0 - 7.9	2.1 - 2.8	8.0 - 9.0	> 2.8	10	2.4	7.0
	Root Depth/Bank Ht	1.0 - 0.9	1.0 - 1.9	0.89 - 0.50	2.0 - 3.9	0.49 - 0.30	4,0 - 5.9	0.29 - 0.15	6.0 - 7.9	0.14 - 0.05	<u> 8.0 - 9.0</u>	< 0.05	10	0.4	5.0
·	Root Dansity (%)	80 - 100	1.0 - 1.9	55 - 79	2.0 - 3.9	30 - 54	4.0 - 5.9	15 - 29	6.0 - 7.9	5-14	8.0 - 9.0	< 5.0	10	50	5.5
	Bank Angle (Degrees)	0 - 20	1.0 - 1.9	21 - 60	2.0 - 3.9	61 - 80	4.0 - 5.9	81 - 90	6.0 - 7.9	91 - 119	8.0 - 9.0	> 1 1 9	10	65	4.5
	Surface Protection (%)	80 - 100	1.0 - 1.9	55 - 79	2,0 - 3.9	30 - 54	4.0 - 5.9	15 - 29	6.0 - 7.9	10 - 15	8.0 - 9.0	< 10	10	50	5.5
	TOTALS	<u></u>	5.0 - 9.5		10 - 19.5		20 - 29.5		30 - 39.5		40 - 45		46 - 50	Sub-total:	27.5
										•				Adjustments:	0

Bedrock - Bank Erosion Potential Always Very Low Boulders - Bank Erosion Potential Aways Low Gravel - Adjust value up by 5 to 10 points depending on composition of sand Sand - Adjust values up by 10 points

Adjustments

TOTAL 27.5 Bank Erosion Potential: Moderate

Stratification - 5 to 10 point upward adjustment depending on location of layers

liver Basin: /atershed:		Yadkin-Pee Dee Beaver Creek									
ross Section #:		106									
rainage Area (sq mi):		6.0									
ate:		8/27/2001									
tation:		33+30									
eature:		Pool									
Station	HI	FS	Elevation	Notes							
	Feet	Feet	Feet			ydraulic Ge					
					Width	Depth	Area	Summary D	ata		
0.0	100.00	5.37	94.63		Feet	Feet	Sq. Ft.				
21.0	100.00	4.70	95.30		•			BKF A	46.8		
33.0	100.00	4.38	95.62		0.1	0.38	0.02	BKF W	35.9		
42.0	100.00	4.33	95.67		0.8	2.66	1.22	Max d	3.8		
50.5	100.00	4.02	95.98		1.4	3.31	4.18	Mean d	1.3		
55.0	100.00	4.56	95,44		1.6	3,75	5.65	W/D Ratio	27.5	sq ft	
59.0	100.00	5.12	94.88	LTOB	1.7	3.13	5.85	Stream Type	F	ft	
60.7	100.00	6.02	93,98		1.6	2.83	4.77	Bank Height Ratio	2.0	ft	
61.0	100.00	7.00	93.00	slump	2.7	3.06	7.95			ft	
61.1	100.00	8.82	91.18		1.8	1.64	4.23				
61.2	100.00	9.20	90.80	LBKF	2.4	1.11	3.30				
62,0	00.001	11.48	88.52	LEW	2.8	0.75	2.60				
63.4	100.00	12.13	87.87		4.0	0.48	2.46				
65.0	100.00	12.57	87.43	TW	2.3	0.38	0.99				
66.7	100.00	11.95	88.05		5.2	0.20	1.51				
68.3	100,00	11.65	88.35		3.0	0.43	0.95				
71.0	100.00	11.88	88.12	REW/WS	2.5	0.25	0.85				
72.8	100.00	10.46	89.54		2.0	0.04	0.29				
75.2	100.00	9.93	90.07		35.9	SUM	46.81				
78.0	100.00	9.57	90.43				· · ·				
82.0	100.00	9.30	90.70					Cross Sectio	n #100	- Pool	
84.3	100.00	9.20	90.80	RBKF							Cit.
89.5	100.00	9.02	90.98					Beaver Creek Strea	un Ke	storation	310
92.5	100.00	9.25	90.75	cut through	98 T						
95.0	100.00	9.07	90.93				1				
97.0	100.00	8.86	91.14	edge of bank	96						U
98.0	100.00	6,27	93.73								∕₹
100.5	100.00	4.86	95.14		(#) 94 + 92 - 98 - 90 -	}					+
101.0	100.00	3.94	96.06	RTOB	E E	\					
108.0	100.00	4.20	95.80		1 2 92 -						╋
113.0	100.00	5.22	94.78		a l	*	-+				
119.0	100.00	5.46	94.54		- 0e 👸	1					+
123.0	100.00	5.12	94.88		_ }	1		1	Í		1
133.0	100.00	4.96	95.04		88	A			_		
144.0	100.00	4.55	95.45		1 °° T				1		1
153.0	100.00	3.58	96.42	edge of road		•		1			
			97.40	edge of road	86 +-			·	1		-+
162.0	100.00	2.60	97.40	eude ur ivau			70	80	90		100

е а к т н 🌍 т е с н

110

120

TOTAL

Bank Erosion Potential: Very High

40.2

BANK EROSION POTENTIAL

Date:	8/27/2001
Stream:	Beaver Creek
Feature:	Pool
Station:	106
Notes:	

CRITERIA	VERY LOW		LOW		MODE	RATE	HIC	ЗH	VERY	High	EXT	REME		
	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	STOVALUES 22 SEQUENCED 22	SCORE
Bank Height Ratio (Bank HVBKF Ht)	1.0 - 1.1	1.0 - 1.9	1.1 - 1 <u>.19</u>	2.0 - 3.9	1.2 - 1.5	4.0 - 5.9	1.6 - 2.0	6.0 - 7.9	2.1 - 2.8	8.0 - 9.0	> 2.8	10	22	8.3
Root Depth/Bank Ht	1.0 - 0.9	1.0 - 1.9	0.89 - 0.50	2.0 - 3.9	0.49 - 0.30	4.0 - 5.9	0.29 - 0.15	6.0 - 7.9	0.14 - 0.05	<u>8.0 - 9.0</u>	< 0.05	10	0.15	7.9
Root Density (%)	80 - 100	1.0 - 1.9	55 - 79	2.0 - 3.9	30 - 54	4.0 - 5.9	15 - 29	6.0 - 7.9	5 - 14	8.0 - 9.0	< 5.0	10	12	8.8
Bank Angle (Degrees)	0 - 20	1.0 - 1.9	21 - 60	2.0 - 3.9	61 - 80	4.0 - 5.9	81 - 90	<u>6.0 - 7.9</u>	91 - <u>119</u>	8.0 - 9.0	> 119	10	70	5.2
Surface Protection (%)	80 - 100	1.0 - 1.9	55 - 79	2.0 - 3.9	30 - 54	4.0 - 5.9	15 - 29	6.0 - 7.9	10 - 15	8.0 - 9.0	< 10	10	9	10.0
TOTALS		5.0 - 9.5		10 - 19.5		20 - 29.5		30 - 39.5		40 - 45		46 - 50	Sub-total: Adjustments:	40.2 0

Adjustments

Bedrock - Bank Erosion Potential Always Very Low Boulders - Bank Erosion Potential Always Low Gravel - Adjust value up by 5 to 10 points depending on composition of sand Sand - Adjust values up by 10 points

Stratification - 5 to 10 point upward adjustment depending on location of layers

еактн 🌍 тесн

Prepared By: River Basin: Watershed: Cross Section #: DraInage Area (sq mi): Date: Station: Feature:		Julie Elmore, Be Yankin-Pee Dee Beaver Creek 105 6.0 8/27/2001 24+60 Riffie	n Goeiz, Dun (Tinton and Geory	e Lankforc											
Station	HI Feet	FS Feet	Elevation Feet	Notes												
0.0	100.00	3.80	96.20													
3.0	100.00	3.75	98.25	on road												
7.0	100.00	5.55	94.45	on road												
10.0	100.00	3.93	96.07													
15.0	100.00	6.28	93.72	LTO8	BI	(F Hydrau	lic Ge	ometry		<u>s</u>	ummary (Jata				
16.0	100.00	6.53	93.47	Top of slump	Wid	h De	pth	Area								
17.0	100.00	8.05	91.92		Fee		set	Sq. Ft.		Ð	KF A	76.4	sqitt			
17.7	100.00	8.65	91.35	Edge of slump					• ,	B	KF W	27.0	tt -			
18.0	100.00	9.72	90,28	LBKF	0.0	0.	00	0		м	ex d	8.3	A.			
18.2	100.00	12,40	87.60	WS	0.2		68	0.27		M	ean đ	2.8	tt			
18,2	100,00	12.69	87.31	LEW	0.0		97	0.00		W	/D Ratio	9.5				
20.3	100.00	12.66	67.34		2.1		94	6.21		F	w	35.0	арргох.			
23.5	100.00	12.62	67.3B		3.2		90	9,34	Entr	enchm	ent Ratio	1.3				
26.8	100.00	12.61	87.39		3.3		89	9.55		Stre	ал Туре	G				
30.0	100.00	12.77	87.23		3.2		05	9.50	Ba		oht Ratio	2.0				
32.9	100.00	12.84	87.16		2.9		12	8.95								
35,0	100.00	12.64	87.36		2.1		92	6.34								
38.8	100.00	12.84	87.16		3.8		12	11.48		N	C Realon:	al Curve (Rurzi)			
40,0	100.00	13.01	66.99	TW	1,2			3.85			atershed !		6.0	sq mi		
42.0	100.00	12.72	67.28		2.0			6.29				Bkf Area	72.5	sqift		
42.5	100.00	12.35	87.65	REW/WS	0.5		63	1.41				Bkf Width		ħ		
43.0	100.00	11.96	88.04	I CLANTING	0.5		24	1.22				Bki Depth		n,		
43.8	100.00	10.81	89.19		0.8			1.33				CN #				
45.0	100.00	9.72	90.28	RBKF	1.2			0.65				Discharge		cts		
45.0	100.00	9.03	90.97	NDNI	27.0		JM	76.4	•							
48.0	100.00	6.52	93.48													
50.0	100.00	6.16	93.64						~		Contine -	#105 - R	iffle			
56.0	100.00	6.14	93.86						-							
60.0	100.00	6.32	93.68	RTOB					Beaver	Creel	< Streaπ	Restor	ation Si	ie		
70.0	100,00	6.44	93.56	RIGB	98			··			· · ·			<u> </u>		
81.0	100.00	6.21	93.79				1								1	1
88,0	100.00	6.44	93.56		96										-[
94.0	100.00	6.34	93.66		1	Λ		1 1							-	1
98.0	100.00	7.35	92.65			NY I			F							I
100.0	100.00	8.15	91.85		5 94 -		-				-1.4					-
103.0	100.00	7,58	92.42		1 8 1			1 1		1	-17	1			1	
107.0	100.00	6.24	93.76		⊉ 92 †			Floo	d Prone	. –		1 1				†
107.0	100.007	D.44	33.70				- I '	TI I	1	1	F				1	
· · · · ·					(‡) 94 100 92 100 92			┇╈╺╸┝		+	-7	+			1	
n de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de l					1 - 1			Ba	nkfull		1					
					88					A	*					1
					86						<u> </u>					I
					0.0	10.0		20.0	30.0	40	.0 5	i0.0	60.0	70.0	81	D.O

Distance (ft)

90.0

100.0

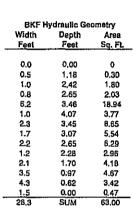
TOTAL

Bank Erosion Potential: Very High

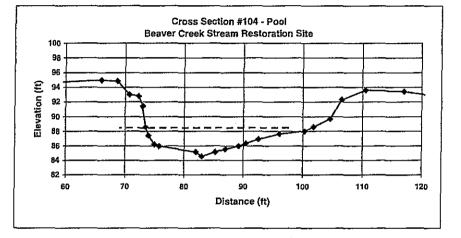
42.4

BANK EROSION POTENTIAL

Date:	8/27/2001	
Stream:	Beaver Creek	
Føature:	Riffle	
Slation:	105	
Notes:		


Adjustments

CRITERIA	VERY LOW		LO	N	MODERATE		HIC	ЭЙ	VERY	HIGH	EXT	REME		20
	VALUE	INDEX	YALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	2 COBSERVED ST	LISCORES
Bank Height Ratio (Bank Hi/BKF Hi)	1.0 - 1.1	1.0 - 1.9	1.1 - 1.19	2.0 - 3.9	1.2 - 1.5	4.0 - 5.9	1.6 - 2.0	6.0 - 7.9	2.1 - 2.8	B.O - 9.O	> 2.8	10	2	7.9
Root Depth/Bank Ht	1.0 - 0.9	1.0 - 1.9	0.89 - 0.50	2.0 - 3.9	0.49 - 0,30	4.0 - 5.9	0.29 • 0.15	6.0 7.9	0.14 0.05	8.0 9.0	< 0.05	10	02	7.5
Root Density (%)	80 - 100	1.0 - 1.9	55 - 79	2.0 - 3.9	30 - 54	4.0 - 5.9	15 - 29	6.0 - 7.9	5 - 14	8.0 9.0	< 5.0	10	9	8.5
Bank Angle (Degrees)	0-20	1.0 - 1.9	21 - 60	2.0 - 3.9	61 - 80	4.0 - 5.9	81 • 90	6.0 - 7.9	91 - 119	8.0 • 9.0	> 119	10	115	8.5
 Surface Protection (%) 	BD - 100	1.0 - 1.9	55 - 7 9	2.0 - 3.9	30 - 54	4.0 - 5.9	15 - 29	6.0 - 7.9	10 - 15	8.0 - 9.0	< 10	10	5	10.0
TOTALS		5.0 - 9.5		10 - 19.5		20 - 29.5		30 - 39.5		40 - 45		46 - 50	Sub-total: Adjustments:	42.4 D


Sedrock - Bank Erosion Polential Aways Very Low Boulders - Bank Erosion Potential Aways Low Gravel - Adjust value up by 5 to 10 points depending on composition of sand Sand - Adjust velues up by 10 points

Stratification - 5 to 10 point upward adjustment depending on location of layers

Prepared By: River Basln: Watershed: Cross Section #: DraInage Area (sq mi): Date: Station: Feature:		Julie Elmore, ße Yadkin-Pee Dee Beaver Creek 104 6.0 8/27/2001 17+20 Pool	n Goetz, Da	n Clinton and (George Lankford
Station	H	FS	Elevation	Notes	
	Feet	Feet	Feet		
0.0	100.00	1.19	98.81		
12.0	100.00	3.67	96.33		
25,0	100,00	4.90	95.10		
44,5	100.00	5.61	94.39	Toe of slope	
57.0	100.00	5.36	94.64		
66,0	100.00	5.03	94.97		
68.7	100.00	5.14	94.86	LTOB	В
70.7	100.00	6.98	93.02	slump	Wid
72.3	100.00	7.19	92.81		Fee
73.0	100.00	8.55	91.45		
73.5	100.00	11.38	88.62	LBKF	0.0
74.0	100.001	12.56	87.44		0.5
75.0	100.00	13.80	86.20		1.0
75.8	100.00	14,03	85,97	LEW	0.8
82.0	100.00	14.84	85.16		6,2
83.0	100.00	15,45	84.55	TW	1.0
85.3	100.00	14.83	85.17		2.3
87.0	100.00	14.45	85.55		1.7
89.2	100.00	14.03	85.97	REW/WS	2.2
90.4	100.00	13.66	86.34	-	1.2
92.5	100.00	13,08	86.92		2.1
96.0	100.00	12.35	87.65		3.5
100.3	100.00	12.00	88.00		4.3
101.8	100.00	11.38	88.62	RBKF	1.5
104.6	100.00	10.32	89.68		28.3
106.5	100.00	7.68	92.32		
110.5	100.00	6.37	93.63	RTOB	
117.0	100.00	6.56	93.44		Summa
124.0	100.00	7.41	92.59		
138.0	100.00	7.92	92.08	Edge of field	BKF A
151.0	100.00	7.85	92.15	-	BKF W
174,0	100.00	7.99	92.01		Max d
200.0	00.001	7.R5	92.15		Mean d
1					W/D Ra
2.1					Stream T
					Deals Malabi D

NC Regional Curve (Rural) Watershed Size 6.0 sq mi

E A R T H 🗐 T E G H

е л R T H 🌍 T Е С Н

TOTAL

Bank Erosion Potential:

37.6

High

.

BANK EROSION POTENTIAL

Date:	8/27/2001
Stream:	Beaver Creek
Feature:	Pool
Station:	104
Notes:	

CRITERIA	VER	Y LOW	LO	W	MODE	RATE	ню	<u>ah</u>	VERY	HIGH	EXT	REME		
	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	AVALUES DOBSERVED A	SECOLD.
Bank Height Ratio (Bank HI/BKF HI)	1.0 - 1.1	1.0 - 1.9	1.1 - 1.19	2.0 - 3.9	1.2 - 1.5	4.0 - 5.9	1.6 - 2.0	6.0 - 7.9	2.1 - 2.8	8.0 - 9.0	> 2.8	10	2.5	8.5
Root Depth/Bank Ht	1.0 - 0.9	1.0 - 1.9	0.89 - 0.50	2.0 - 3.9	0.49 - 0.30	4.0 - 5.9	0.29 - 0.15	6.0 - 7.9	0.14 - 0.05	8.0 - 9.0	< 0.05	10	0.1	8.5
Root Density (%)	80 - 100	1.0 - 1.9	55 - 79	2.0 - 3.9	30 - 54	4.0 - 5.9	15 - 29	6.0 - 7.9	5-14	8.0 - 9.0	< 5.0	10	10	8.5
lank Angle Degrees)	0 - 20	1.0 - 1.9	21 - 60	2.0 - 3.9	61 - 80	4.0 - 5.9	81 - 90	6.0 - 7.9	91 - 119	8.0 - 9.0	> 119	10	62	4.1
Surface Protection %)	80 - 100	1.0 - 1.9	55 - 79	2.0 - 3.9	30 - 54	4.0 - 5.9	15 - 29	6.0 - 7.9	10 - 15	8.0 - 9.0	< 10	10	15	8.0
TOTALS		5.0 - 9.5	<u> </u>	10 - 19.5	<u></u>	20 - 29.5		30 - 39.5		40 - 45		46 - 50	Sub-total: Adjustments:	37.6 0

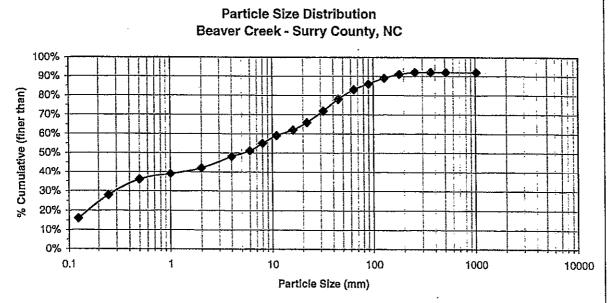
Adjustments Bedrock - Bank Eroston Potential Always Very Low Boulders - Bank Eroston Potential Always Low Gravel - Adjust value up by 5 to 10 points depending on composition of sand Sand - Adjust values up by 10 points

Stratification - 5 to 10 point upward adjustment depending on location of layers

River Wate Cros	on; Ura;		Julie Eimore, I Yadkin-Pee De Beaver Creek 103 6.0 8/27/2001 13+20 Pool		un Clinton a	nd George Lan	kford																	
	Station	HI Feet	FS Feet	Elevation Feet	n Notes																			
	0.0	100.00	4.01	95.99																				
	10.0	100.00	4.01	95,99																				
	21.0	100.00	3.36	96.64										С	ross S	ection	#103 -	Pool						
	25.0	100.00	3.19	96.81				Hydraulic (Ê	Beaver	Creek	Stream	n Resto	ration	Site					
	31.0 33.2	100.00 100.00	3.91 4,60	96.0 9 95.40	LTOB		Width	Depth			100 7-	<u> </u>				· ·····				,				1
	34.7	100.00	4.00 5.90	95.40			Feet	Feet	Sq. Ft.		98									1				
	35.R	100.00	5.90 7.42	94.10			0.0	0.00	٥		98												2	1
	37.5	100.00	9.00	92,50	LBKF		0.0	0.00	0.00		96 🔶					I								1
	40,5	100.00	9.00	89.61	LDKP		3.0	1,39	2.09	1 2					· · · ·	+	•		- ~		•	≁ • ′	*	l
	43.0	100.00	11.38	88.62			2.5	2.38	4.71	Elevation (ft)	94 🕂					<u> </u>				1	<u> </u>			1
		100.00	11.63	88.37			2.0	2.50	5.01	<u> </u>	92				<u>+</u>				_					
		100.00	11.33	68.27	LEW/WS		6.0	2.73	16.08	te la la la la la la la la la la la la la	2								1					
		100.00	11.95	88.05	LUMINS		3.0	2.95	8.52	6										7				
		100.00	12.54	87.46			3.0	3.54	9.73	Ē										V I				
		100.00	13.80	86.20			3.0	4.80	12.51		88 +									Ī	+			
		100.00	14.34	85.66	τw		3.0	5,34	15.21		86													
		100.00	13.98	86.02	•••		4.5	4.98	23.22	· [1								
		100.00	13.01	86.99	REW		3.1	4.01	13.93	1	84 🕂						_ +					<u> </u>		
		100.00	11.73	88.27	WS		0,0	2.73	0.00	1	0	10	20	30	4	0	50	60	70	a	80	90	10	10 Ö
		100.00	9.26	90.74			1.9	0.26	2.84	1 .						Diet	144							
		100.00	9.00		RBKF		0.3	0.00	0.04							Dist	ance (ff	,						
	74.0	600.00	5.55	94,45		-	35.3	SUM	113.90															
	75.0	60.001	5.10	94.90	RTOB					L														
	78.0	100.00	4.89	95.11																				
	87.0	100.00	5.06	94.94		Summary Da	ita		NC Regional	Curve (Ru	ral)													
	92.0	100.00	5.25	94.75					Watershed Siz		6.0	sq mi												
		00.00	4.48	95.52		BKF A	113.9	sg ft																
	100,0	00.00	2.21	97.79		BKF W	35.3	ft																
						Max d	5.3	ft																
						Mean d	3.2	ft																
						W/D Ratio	10,9																	
						Stream Type	F																	
· ·			1			Height Ratio	1.7																	
						-																		

BANK EROSION POTENTIAL

Date:	8/27/2001
Stream:	Beaver Creek
Feature:	Pool
Station:	103
Notes:	


CRITERIA	VEF	IY LOW	LO	W	MODE	RATE	HIC	H	VERY	HIGH	EXT	REME		
	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	CA VALUE ST SOBSERVED	SPORE
Bank Height Ratio (Bank HVBKF Ht)	1.0 - 1.1	1.0 - 1.9	1.1 - 1.19	2,0 - 3.9	1.2 - 1.5	4.0 - 5.9	1.6 - 2.0	6.0 - 7.9	2.1 - 2.8	B.O - 9.0	> 2.8	10	1.7	6.5
Root Depth/Bank Ht	1.0 - 0.9	1.0 - 1.9	0.89 - 0.50	2.0 - 3.9	0.49 - 0.30	4.0 - 5.9	0.29 - 0.15	6.0 - 7.9	0.14 - 0.05	8.0 - 9.0	< 0.05	10	0.2	7.5
Root Density (%)	80 - 100	1.0 - 1.9	55 - 79	2.0 - 3.9	30 - 54	4.0 - 5.9	15 - 29	6.0 - 7.9	5~14	8.0 - 9.0	< 5.0	10	4	10.0
Bank Angle (Degrees) Surface Protection	0 - 20	1.0 - 1.9	21 - 60	2.0 - 3.9	61 - 80	4.0 - 5.9	<u>81 - 90</u>	6.0 - 7.9	91 - 119	8.0 - 9.0	> 119	10	90	7.9
(%)	80 - 100	1.0 - 1.9	55 - 79	2.0 - 3.9	30 - 54	4.0 - 5.9	15 - 29	6.0 • 7.9	10 • 15	8.0 - 9.0	< 10	10	5	10.0
TOTALS		5.0 - 9.5		10 - 19.5		20 - 29,5		30 - 39.5		40 - 45		46 - 50	Sub-total: Adjustments:	41.9

Adjustments

Bedrock - Bank Erosion Potential Always Very Low Boulders - Bank Erosion Potential Always Low Gravel - Adjust value up by 5 to 10 points depending on composition of sand Sand - Adjust values up by 10 points TOTAL 41.9 Bank Erosion Potential: Very High

Stratification - 5 to 10 point upward adjustment depending on location of layers

			PEBBLE	COUNT					
Site: Beave	r Creek					8/27/2001		·····	
Party: Ben	Goetz, George	Lankford, Da	n Clintor	ר ו		Reach: WR	P Restorat	ion	
				Particle	Counts				
Inches	Particle	Millimeter		Riffles	Pools	Total No.	ltem %	% Cumulat	
	Silt/Clay	< 0.062	S/C	6	5	11	11%	11%	
	Very Fine	.062125	S	1	4	5	5%	16%	
	Fine	.12525	A	5	7	12	12%	28%	
	Medium	.2550	Ň	2	6	8	8%	36%	
	Coarse	.50 - 1.0	D	0	3	3	3%	39%	
.0408	Very Coarse	1.0 - 2.0	S	0	3	3	3%	42%	
.0816	Very Fine	2.0 - 4.0		3	3	6	6%	48%	
.1622	Fine	4.0 - 5.7	G R	2	1	3	3%	51%	
.2231	Fine	5.7 - 8.0	R	3	1	4	4%	55%	
.3144	Medium	8.0 - 11.3	A	2	2	4	4%	59%	
.4463	Medium	11.3 - 16.0	A > E L S	2	1	3	3%	62%	
.6389	Coarse	16.0 - 22.6	Ē	4	0	4	4%	66%	
.89 - 1.26	Coarse	22.6 - 32,0	Ľ,	3	3	6	6%	72%	
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	4	2	6	6%	78%	
1.77 - 2.5	Very Coarse	45.0 - 64.0		4	1	5	5%	83%	
2.5 - 3.5	Small	64 - 90	C	3	0	3	3%	86%	
3.5 - 5.0	Small	90 - 128	C O B	3	0	3	3%	89%	
5.0 - 7.1	Large	1 28 - 180	В	1	1	2	2%	91%	
7.1 - 10.1	Large	180 - 256	_L	1	0	1	1%	92%	
10.1 - 14.3		256 - 362	В	0	0	0	0%	92%	
14.3 - 20	Small	362 - 512	Ļ.	0	0	0	0%	92%	
20 - 40	Medium	512 - 1024	D	0	0	0	0%	92%	
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	92%	
	Bedrock		BDRK	1	7	8	8%	100%	
······			Totals	50	50	100	100%	100%	

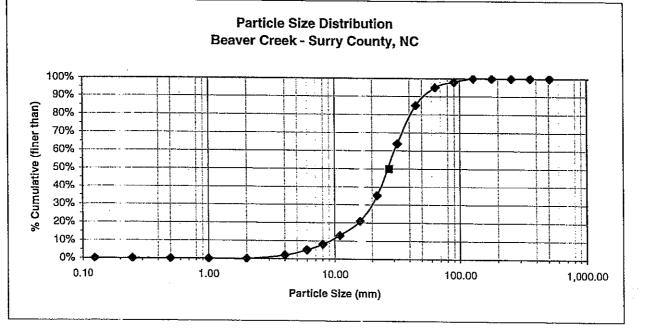
E A R T H 🐑 T E C H

- Contraction

Tanana galanta B

Account of the second

Contraction of the second


Concernance

Province of the second

ASSAULT AND ADDRESS OF

An and a state of the

			PAVEM	ENT PEBB	LE COUNT				
Site: Beave						12/3/2001			
Party: Ben	Goetz and Dar	Clinton				Reach: WRP Restoration			
				Particle	Counts	_			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	ltem %	% Cumulativ	
	Silt/Clay	< 0.062	S/C	0	0	0	0%	0%	
	Very Fine	.062125	S	0	0	0	0%	0%	
	Fine	.12525	A	0	0	0	0%	0%	
	Medium	.2550	N	0	0	0	0%	0%	
	Coarse	.50 - 1.0	D	0	0	0	0%	0%	
.0408	Very Coarse	1.0 - 2.0	S	0	0	0	0%	0%	
.0816	Very Fine	2.0 - 4.0		2	0	2	2%	2%	
.1622	Fine	4.0 - 5.7	G	3	0	3	3%	5%	
.2231	Fine	5.7 - 8.0	R	3	0	3	3%	8%	
.3144	Medium	8.0 - 11.3	A	5	0	5	5%	13%	
.4463	Medium	11.3 - 16.0	V	8	0	8	8%	21%	
.6389	Coarse	16.0 - 22.6	E	14	0	14	14%	35%	
.89 - 1.26	Coarse	22.6 - 32.0	L	29	0	29	29%	64%	
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	21	0	21	21%	85%	
1.77 - 2.5	Very Coarse	45.0 - 64.0		10	0	10	10%	95%	
2.5 - 3.5	Small	64 - 90	C	3	0	3	3%	98%	
3.5 - 5.0	Small	90 - 128	0	2	0	2	2%	100%	
5.0 - 7.1	Large	128 - 180	В	0	0	0	0%	100%	
7.1 - 10.1	Large	180 - 256	<u> </u>	0	0	0	0%	100%	
10.1 - 14.3		256 - 362	В	0	0	0	0%	100%	
14.3 - 20	Small	362 - 512	L	0	0	0	0%	100%	
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%	
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	100%	
	Bedrock		BDRK	0	0	0	0%	100%	
			Totals	100	0	100	100%	> 100%	

е а в т н 🌍 т е с н

Accompanya Accompanya

Constant of the second

And Pollar

Contraction of the second

Approx of the state of the

(Constanting

encontraction of the

BEAVER CREEK RESTORATION PROJECT Entrainment Calculation

27.5 mm

70 sq ft

0.037

0.23 ft

0.006

11.2

28.0

2.50

Sub Pavement Sample
Beaver Creek

D50 Riffle Pavement

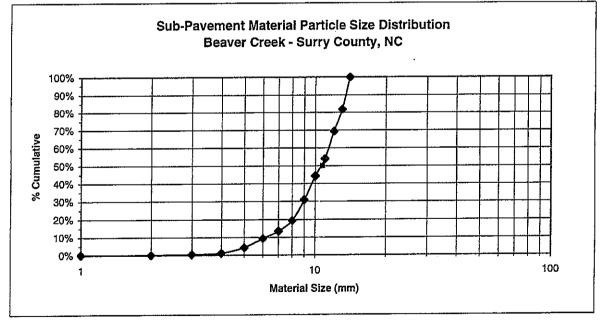
Largest Particle

Depth required

Area Required

Bankfull Width

Width/Depth Ratio


Design mean depth

Tc=

Slope

12/3/2001

Sieve Size (mm)	<0.0085	0.075 75	0.106 106	0.25 250	0.3 300	0.6 600	0.85 850	1.18	2	4.75	9.5	12.7	19	25	
micro Tare Weight(Ibs)	0.78	0.72	0.74	0.79	0.8	0.84	0.92	0.92	1	1.09	1.17	1.19	1.25	1.25	
Sample Weight (lbs)	0.79	0.73	0.79	0.89	1.28	1.58	1.54	1.8	2.72	3.08	2.62	3.51	3.12	3.96 T	OTAL
Net Sample Weight (lbs)	0.73	0.01	0.05	0.00	0.48	0.74	0.62	0.88	1.72	1.99	1.45	2.32	1.87	2.71	14.95 lbs
%	0%	0%	0%	1%	3%	5%	4%	6%	12%	13%	10%	16%	13%	18%	
% Cumulative	0%	0%	0%	1%	4%	9%	13%	19%	31%	44%	54%	69%	82%	100%	
D50 Subpavement	10.7	mm	50%								_				

BASIN CREEK REFERENCE REACH - Rosgen Type C4 Location: Wilkes County, NC - Take Traphill Road to Long Bottom Road (SR 173: Reach: Station 0+00 at confluence of Basin and Cove Creek Quad Sheet: Whitehead, NC Drainage Area: 7.2 sq. ml.

LONGITUDINAL PROFILE

and a second second second second second second second second second second second second second second second s

COLONARDONIA

Contraction of the local distribution of the

ADDRESS AND ADDRESS

A CONTRACTOR OF THE OWNER OF THE

an losses

Elevations Pailor of Bank Pailor of Bank BKF Depth Feature 0 95.2 97.0 97.0 99.4 2.4 100.6 1.3 TOP=Top of Pool 16 94.6 97.0 97.0 99.3 2.3 100.6 1.3 TOP=Top of Pool 50 96.0 97.0 97.0 99.4 2.4 99.8 1.1 SOG=Start of Gilde 66 95.7 96.6 96.3 99.3 2.5 99.8 1.1 SOG=Start of Gilde 76 96.0 96.4 95.4 98.4 98.5 2.5 99.8 1.1 SOG=Start of Gilde 1413 94.0 94.6 97.1 2.6 97.5 1.2 Rifle X-Section 202 93.6 91.3 91.3 93.9 92.6 TOP SOR=Start of Run 331 90.5 91.3 91.3 94.1 2.6 TOP 384 83.7 91.3 94.3 94.1 2.8 SOR SOG 392 90.7 91.3							Difference in and Water S			Ratio of
STA Thalweg LEW REW LBF RBF Diff (igt) Diff (igt) Low Top to Max of Bank BKF Depth Feature 0 95.2 97.0 97.0 99.4 2.4 100.6 1.3 TOP=Top of Pool 16 94.6 97.0 97.0 99.4 2.4 99.8 1.1 SOG=Start of Gilde 50 96.0 97.0 99.4 2.4 99.8 1.1 Gilde X-Section 66 95.7 96.6 96.6 99.3 92.3 2.7 2.7 99.6 1.1 Gilde X-Section 111 95.3 95.4 95.4 98.0 2.6 98.1 1.3 202 93.6 93.9 99.6 96.4 9.9 2.5 98.1 1.3 211 90.6 91.3 91.3 94.1 2.8 SOR=Start of Ruffle 321 90.5 91.3 91.3 94.1 2.4 95.1 1.2 Poid X-Section 334 89.7 91.3 91.3										
STA Thallweg LEW REW LBF RBF Diff (left) Diff (rgt) of Bank BKF Depth Feature 0 95.2 97.0 97.0 99.4 2.4 100.6 1.3 TOP=Top of Pool 16 94.6 97.0 97.0 99.4 2.4 99.8 1.1 SOG=Start of Gilde 50 96.0 97.0 99.4 2.4 99.6 1.1 Gilde X-Section TOR=Top of Pool 76 96.0 96.3 96.3 96.3 96.3 99.3 2.7 2.7 99.6 1.1 Gilde X-Section TOR=Top of Fliffle 111 96.3 96.4 97.1 2.5 98.1 1.3 202 93.6 91.4 91.5 94.0 2.6 SOR=Start of Ruin 331 90.5 91.3 91.3 93.9 96.8 2.8 2.9 97.5 1.2 Riffle X-Section 331 90.5 91.3 91.3 94.1 2.8 95.1 1.2 Pool X-Section SOG 392									Low Top	
16 94.6 97.0 99.3 2.3 100.6 1.3 TOP=Top of Pool 33 95.0 97.0 97.0 99.4 2.4 53 96.2 96.9 99.4 2.4 53 96.2 96.9 99.4 2.5 99.8 1.1 SOG=Start of Gilde 66 95.7 96.6 99.3 99.3 2.7 2.7 99.6 1.1 Gilda X-Section 76 96.0 96.3 98.3 99.3 2.6 TOR=Top of Fliffle 111 95.3 95.4 95.4 98.9 2.6 SOR=Start of Gilde 202 93.6 93.9 96.8 2.9 97.5 1.2 Riffle X-Section 321 90.6 91.4 91.3 93.9 93.9 2.6 SOR=Start of Run 334 89.7 91.3 91.3 94.1 2.8 95.1 1.2 Riffle X-Section 366 88.9 91.2 91.3 94.1 2.8 95.1 1.2 Riffle X-Section 376 90.2 91.3 91.3 93.8 2.5	STA	Thalweg	LEW	REW	LBF	RBF	Diff (left)	Diff (rgt)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			97.0	97.0	99.4		2.4		100 6	1 2 TOP Top of Day
3395.097.097.099.42.45096.097.097.099.42.45396.296.998.999.32.72.799.61.1 Glide X-Section7696.096.396.398.92.6TOR=Top of RiffleTOR=Top of Riffle11195.395.495.498.02.6TOR=Top of Riffle120293.693.993.996.896.82.997.51.2 Riffle X-Section22791.892.492.494.02.6SOR=Start of Run33190.691.491.594.094.02.6SOR=Start of Run33190.591.391.394.12.8TOP34489.791.391.394.12.92.895.11.2 Pool X-Section36688.991.291.394.12.92.895.11.2 Glide X-Section37690.291.391.394.33.03.09.095.11.2 Glide X-Section38290.591.391.394.32.92.993.71.2 Elifle X-Section38390.591.391.394.32.6SOR44789.089.989.992.82.92.993.71.2 Run X-Section50984.489.389.391.62.5TORSOR62788.889.389.62.5TORSOR628<	16	94.6	97.0	97.0					100.0	1.3 TOP=Top of Pool
50 96.0 97.0 97.0 99.4 2.4 53 96.2 96.9 99.4 2.5 99.8 1.1 SOG=Start of Glide 76 96.0 96.3 96.4 98.0 2.6 70 99.6 1.1 Glide X-Section 111 95.3 95.4 98.0 2.6 70=Top of Riffle 70=Top of Riffle 120 93.6 93.9 93.9 96.8 96.8 2.9 97.5 1.2 Riffle X-Section 321 90.6 91.4 91.5 94.0 2.6 SOR=Start of Run 334 89.7 91.3 91.3 93.9 2.6 SOR=Start of Run 334 89.7 91.3 91.3 94.1 2.8 TOP 366 86.9 91.2 91.3 94.1 2.8 SOG SOG 376 90.2 91.3 91.3 94.3 30.0 30.0 95.1 1.2 Glide X-Section 392 90.7 91.3 91.3 92.8 2.9 2.9 SOR 4447 80.0 89.9<	33		97.0	97.0	99.4					
53 96.2 96.9 99.4 2.5 99.8 1.1 SOG=Start of Gilde 66 95.7 96.6 96.3 99.3 2.7 2.7 99.6 1.1 Gilde X-Section 111 95.3 95.4 95.4 98.9 2.6 7CR=Top of Fiffle 1202 93.6 93.9 93.9 96.8 96.8 2.9 2.9 97.5 1.2 Riffle X-Section 202 93.6 91.4 91.5 94.0 94.0 2.6 SOR=Start of Rufile 331 90.5 91.3 91.3 93.9 93.9 2.6 SOR=Start of Rufile 334 89.7 91.3 91.3 94.1 94.1 2.8 SO.1 1.2 Pool X-Section 376 90.2 91.3 91.3 94.1 2.8 2.9 95.1 1.2 Gilde X-Section 392 90.7 91.3 91.3 93.8 2.9 2.9 SOR SOR 4444 80.0 89.9 92.8 92.8 2.9 2.9 93.7 1.2 Run X-Section 392 <td< td=""><td></td><td></td><td>97.0</td><td>97.0</td><td>99,4</td><td></td><td></td><td></td><td></td><td></td></td<>			97.0	97.0	99,4					
66 95.7 96.6 96.3 99.3 99.3 2.7 2.7 99.6 1.1 Sold=Statt of Callede 76 96.0 96.3 96.3 96.4 98.0 2.6 1.1 Sold=Statt of Fliffle 111 95.3 95.4 98.0 2.6 1.3 Globestatt of Fliffle 1202 93.6 93.9 96.8 96.8 2.9 2.9 97.5 1.2 Riffle X-Section 321 90.6 91.4 91.5 94.0 2.6 SOR=Statt of Run 334 90.5 91.3 91.3 93.9 2.8 95.1 1.2 Poil X-Section 336 88.9 91.2 91.3 94.1 2.8 SOG SOG 383 90.5 91.3 91.3 94.3 9.0 3.0 95.1 1.2 Poil X-Section 383 90.5 91.3 91.3 93.8 2.9 2.9 SOG SOR 4447 89.0 89.9 92.8 92.8 2.9 93.7 1.2 Run X-Section			96.9	96.9	99.4				00 8	11200 0000000
76 96.0 96.3 96.3 98.9 2.6 TOR=Top of Riffle 111 95.3 95.4 93.0 2.6 TOR=Top of Riffle 202 93.6 93.9 96.8 96.8 2.9 2.9 97.5 1.2 Riffle X-Section 201 90.6 91.4 91.5 94.0 2.6 SOR=Start of Ruffle 321 90.6 91.4 91.5 94.0 2.6 SOR=Start of Ruffle 331 90.5 91.3 91.3 93.9 93.9 2.6 SOR=Start of Ruffle 334 89.7 91.3 91.3 94.1 2.9 2.8 95.1 1.2 Pool X-Section 336 90.5 91.3 91.3 94.1 2.9 2.8 95.1 1.2 Gilde X-Section 3383 90.5 91.3 91.3 94.3 94.3 3.0 3.0 95.1 1.2 Gilde X-Section 392 90.7 91.3 91.3 94.3 2.6 2.9 SOR SOR 4447 89.0 89.9 92.8 2.9 2.	66	95.7	96.6	96.6		99.3				
111 95.3 95.4 95.4 98.0 2.6 104=13p of Hume 143 94.0 94.6 97.1 2.5 98.1 1.3 202 93.6 93.9 93.9 96.8 96.8 2.9 2.9 97.5 1.2 Riffle X-Section 321 90.6 91.4 91.5 94.0 94.0 2.6 SOR=Start of Run 334 89.7 91.3 91.3 94.1 94.1 2.8 TOP 366 88.9 91.2 91.3 94.1 94.1 2.8 SOR SOG 383 90.5 91.3 91.3 94.3 94.3 3.0 3.0 95.1 1.2 Roit X-Section 392 90.7 91.3 91.3 94.3 94.3 3.0 3.0 95.1 1.2 Rifte X-Section 392 90.7 91.3 91.3 94.3 94.3 3.0 3.0 95.1 1.2 Rifte X-Section 509 84.8 89.8 92.8 2.9 2.9 93.7 1.2 Run X-Section 509 <td< td=""><td>76</td><td>96.0</td><td>96.3</td><td></td><td></td><td></td><td></td><td></td><td>33.0</td><td></td></td<>	76	96.0	96.3						33.0	
143 94.0 94.6 94.6 97.1 2.5 98.1 1.3 202 93.6 93.9 96.8 96.8 2.9 2.9 97.5 1.2 Riffla X-Section 321 90.6 91.4 91.5 94.0 94.0 2.6 SOR=Start of Run 334 90.5 91.3 91.3 94.1 94.1 2.8 TOP 356 88.9 91.2 91.3 94.1 94.1 2.8 SOG SOG 376 90.2 91.3 91.3 94.1 94.3 3.0 95.1 1.2 Pool X-Section 376 90.2 91.3 91.3 94.3 94.3 3.0 95.1 1.2 Cool X-Section 376 90.2 91.3 91.3 94.3 94.3 3.0 95.1 1.2 Cool X-Section 392 90.7 91.3 91.3 93.8 2.5 TOR SOR 4447 89.0 89.9 92.8 2.9 2.9 93.7 1.2 Run X-Section TOR 507 88.8 89.3	111	95.3	95,4							OR=1 op of Hittle
202 93.6 93.9 96.8 96.8 2.9 2.9 97.5 1.2 Rifflex-Section 321 90.6 91.4 91.5 94.0 2.5 SOR=Start of Run 331 90.5 91.3 91.3 93.9 93.9 2.6 TOP 334 89.7 91.3 91.3 94.1 2.8 95.1 1.2 Poil X-Section 356 88.9 91.2 91.3 94.1 2.8 95.1 1.2 Col X-Section 366 88.9 90.2 91.3 94.3 94.3 3.0 3.0 95.1 1.2 Clide X-Section 376 90.2 91.3 91.3 94.3 94.3 3.0 3.0 95.1 1.2 Clide X-Section 383 90.5 91.3 91.3 93.8 2.5 TOR SOR 4447 89.0 89.8 92.6 2.9 93.7 1.2 Run X-Section TOR 509 88.4 89.3 91.8 2.5 SOR TOR SOR 527 88.8 89.3 91.8 <t< td=""><td></td><td></td><td>94,6</td><td>94.6</td><td></td><td></td><td></td><td></td><td>08.1</td><td>10</td></t<>			94,6	94.6					08.1	10
277 91.8 92.4 92.4 94.9 2.5 SOR SOR=Start of Run 321 90.6 91.4 91.5 94.0 92.6 SOR=Start of Run 334 89.7 91.3 91.3 94.1 2.9 2.8 95.1 1.2 Pool X-Section 366 88.9 91.2 91.3 94.1 2.9 2.8 95.1 1.2 Pool X-Section 376 90.2 91.3 94.3 94.1 2.9 2.8 95.1 1.2 Glide X-Section 383 90.5 91.3 91.3 94.3 2.9 SOR SOG 383 90.5 91.3 91.3 94.3 2.9 SOR SOR 434 89.0 89.9 92.8 2.9 SOR SOR SOR 447 89.0 89.3 89.3 91.8 2.5 SOR SOR 509 88.4 89.3 89.2 91.7 2.5 SOR SOR 627 88.8 89.3 89.2 90.8 2.7 SOR SOR </td <td>202</td> <td>93.6</td> <td>93.9</td> <td></td> <td></td> <td>96.8</td> <td></td> <td></td> <td></td> <td></td>	202	93.6	93.9			96.8				
321 90.6 91.4 91.5 94.0 94.0 2.6 SOR=Start of Run 331 90.5 91.3 91.3 93.9 93.9 2.6 TOP 354 88.7 91.3 94.1 94.1 2.8 TOP SOG 376 90.2 91.3 91.3 94.1 94.1 2.8 95.1 1.2 Pool X-Section SOG 383 90.5 91.3 91.3 94.3 3.0 3.0 95.1 1.2 Gilde X-Section SOG 392 90.7 91.3 91.3 92.8 2.9 SOR SOR 447 89.0 89.9 89.9 92.8 2.9 SOR SOR 447 89.0 89.8 89.3 91.8 2.5 TOR SOR 509 86.4 89.3 89.3 91.8 2.5 TOR SOR 527 88.8 89.3 89.2 90.8 2.5 TOR SOR 602 87.6 88.3 88.2 90.6 2.5 TOR SOR	277	91.8 [.]	92.4							1.2 Hime X-Section
331 90.5 91.3 91.3 93.9 93.9 2.6 334 89.7 91.3 91.3 94.1 94.1 2.8 TOP 356 88.9 91.2 91.3 94.1 94.1 2.8 SOR SOR 376 90.2 91.3 91.3 94.1 2.8 2.8 95.1 1.2 Pool X-Section 383 90.5 91.3 91.3 94.3 3.0 3.0 95.1 1.2 Glide X-Section 392 90.7 91.3 91.3 93.8 2.9 SOR SOR 434 89.0 89.9 89.9 92.8 2.9 2.9 93.7 1.2 Run X-Section 447 89.0 89.9 89.8 92.6 2.8 2.9 2.9 93.7 1.2 Run X-Section 509 88.4 89.3 89.3 91.7 2.5 TOR SOR 557 67.8 88.5 88.8 91.0 2.5 TOR SOR 662 85.3 87.8 87.8 90.4 2.5 </td <td>321</td> <td>90,6</td> <td>91.4</td> <td>91.5</td> <td></td> <td>94.0</td> <td></td> <td></td> <td></td> <td></td>	321	90,6	91.4	91.5		94.0				
334 89.7 91.3 91.3 94.1 94.1 2.8 TOP 356 88.9 91.2 91.3 94.1 94.1 2.9 2.8 95.1 1.2 Pool X-Section 376 90.2 91.3 91.3 94.1 2.8 3.0 95.1 1.2 Pool X-Section SOG 383 90.5 91.3 91.3 94.3 94.3 3.0 3.0 95.1 1.2 Glide X-Section SOG 392 90.7 91.3 91.3 93.8 2.5 TOR SOR 447 89.0 89.9 89.9 92.8 2.9 2.9 93.7 1.2 Run X-Section 4466 89.0 89.8 92.6 2.8 SOR TOR SOR 509 88.4 89.3 91.6 91.7 2.5 SOR SOR 527 88.8 89.3 89.2 90.8 2.5 SOR SOR 602 87.6 86.3 86.2 90.8 2.5 TOR SOR 644 86.7 87.8 <td>331</td> <td>90.5</td> <td>91.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>SOH=Start of Run</td>	331	90.5	91.3							SOH=Start of Run
356 88.9 91.2 91.3 94.1 94.1 2.9 2.8 95.1 1.2 Pool X-Section SOG 383 90.5 91.3 91.3 94.3 94.3 3.0 3.0 95.1 1.2 Glide X-Section SOG 392 90.7 91.3 91.3 94.3 94.3 3.0 3.0 95.1 1.2 Glide X-Section TOR 434 89.0 89.9 89.9 92.8 2.9 2.9 93.7 1.2 Run X-Section TOR 447 89.0 89.8 89.8 92.8 2.9 2.9 93.7 1.2 Run X-Section TOR 509 88.4 89.3 89.3 91.8 2.5 SOR SOR 527 88.8 89.3 89.2 91.8 91.7 2.5 TOR 557 87.8 88.3 89.2 91.8 91.7 2.5 SOR 602 87.6 88.3 89.2 90.8 2.7 SOR SOR 644 86.7 87.8 87.8 90.4 2.6 TOP SOG 652	334	89.7	91.3							700
376 90.2 91.3 91.3 94.1 2.8 SOG SOG 383 90.5 91.3 91.3 94.3 94.3 3.0 3.0 95.1 1.2 Glide X-Section 392 90.7 91.3 91.3 93.8 2.5 TOR 434 89.0 89.9 89.9 92.8 2.9 2.9 93.7 1.2 Run X-Section 4447 89.0 89.9 89.9 92.8 92.8 2.9 2.9 93.7 1.2 Run X-Section 466 89.0 89.8 89.8 92.6 2.8 2.9 93.7 1.2 Run X-Section 509 88.4 89.3 89.2 91.8 91.7 2.5 TOR 557 87.8 86.5 88.8 91.0 2.5 SOR SOR 602 87.6 88.3 88.2 90.8 2.5 TOR SOR 644 86.7 87.8 87.8 90.4 2.6 2.5 91.4 1.2 Pool X-Section 652 85.3 87.8 87.8	356	88.9	91.2	91.3				28	05 1	
383 90.5 91.3 91.3 94.3 94.3 3.0 3.0 95.1 1.2 Gilde X-Section 392 90.7 91.3 91.3 93.8 2.5 TOR 434 89.0 89.9 89.9 92.8 2.9 SOR 447 89.0 89.9 89.9 92.8 2.9 93.7 1.2 Run X-Section 466 89.0 89.8 89.8 92.8 2.9 2.9 93.7 1.2 Run X-Section 509 88.4 89.3 89.3 91.8 2.5 SOR TOR 527 88.8 89.3 89.2 91.8 91.7 2.5 SOR 557 87.8 88.5 88.8 91.0 2.5 SOR 602 87.6 88.3 81.2 90.8 2.5 TOR 644 86.7 87.8 87.8 90.4 2.6 TOP 652 85.3 87.8 90.4 2.7 SOG TOR 661 86.7 87.7 87.8 90.4	376	90.2	91,3			•		4.0	33.1	
392 90.7 91.3 91.3 93.8 2.5 TOR SOR 434 89.0 89.9 89.9 92.8 2.9 SOR SOR 447 89.0 89.9 89.9 92.8 2.9 2.9 93.7 1.2 Run X-Section 466 89.0 89.8 89.8 92.6 2.8 TOR SOR 509 88.4 89.3 89.3 91.8 2.5 SOR TOR 527 88.8 89.3 89.2 91.8 91.7 2.5 TOR 557 87.8 88.5 88.8 91.0 2.5 SOR SOR 602 87.6 88.3 88.2 90.8 2.5 TOR SOR 644 86.7 87.8 87.8 90.4 2.6 TOR SOR 644 86.7 87.8 87.8 90.4 2.7 SOG SOG 661 86.7 87.8 87.0 89.5 2.5 2.5 TOR SOG 763 85.3 <	383	90.5	91.3	91.3	94.3	94.3		3.0	05 1	
434 89.0 89.9 89.9 92.8 2.9 2.9 93.7 1.2 Run X-Section 447 89.0 89.8 89.9 92.8 92.8 2.9 2.9 93.7 1.2 Run X-Section 466 89.0 89.8 89.8 92.6 2.8 70R 50R 509 88.4 89.3 89.2 91.8 2.5 70R 50R 527 88.8 89.3 89.2 91.8 91.7 2.5 50R 50R 557 87.8 88.5 88.8 91.0 2.5 TOR 50R 602 87.6 88.3 88.2 90.8 2.5 TOR 50R 634 86.8 87.8 87.8 90.4 2.6 TOR 50R 644 66.7 87.8 87.8 90.4 2.6 TOP 50G 50G 652 85.3 87.8 90.4 2.5 70P 50G 50G 676 67.2 87.8 87.7 90.3 2.5 2.5 70	392	90.7	91.3			• •••			33.1	
447 89.0 89.9 89.9 92.8 92.8 2.9 2.9 93.7 1.2 Run X-Section 509 88.4 89.3 89.3 91.8 2.5 SOR TOR 527 88.8 89.3 89.2 91.8 91.7 2.5 SOR SOR 557 87.8 88.5 88.8 91.0 2.5 SOR SOR 602 87.6 88.3 89.2 90.8 2.5 TOR SOR 634 86.8 87.8 87.8 90.5 2.7 SOR SOR 644 86.7 87.8 87.8 90.4 2.6 TOP TOP 652 85.3 87.8 87.8 90.4 2.6 TOP SOG 661 86.7 87.7 87.8 90.4 2.7 SOG SOG 765 86.2 86.9 87.0 89.5 2.5 7OR SOG 763 85.3 86.5 86.1 89.0 2.5 SOR SOR 803 <	434	89.0	89,9							
466 89.0 89.8 99.8 92.6 2.8 TOR TOR 509 88.4 89.3 89.3 91.8 2.5 SOR SOR 527 88.8 89.3 89.2 91.8 91.7 2.5 SOR SOR 557 87.8 88.5 88.8 91.0 2.5 SOR SOR 602 87.6 88.3 88.2 90.8 2.5 TOR SOR 634 86.8 87.8 87.8 90.4 2.6 TOP SOR 644 86.7 87.8 87.8 90.4 2.6 TOP SOR 652 85.3 87.8 90.4 2.6 TOP SOG SOG 661 86.7 87.7 87.8 90.4 2.7 SOG SOG 676 87.2 87.8 87.7 90.3 2.5 2.5 TOR 735 86.2 86.9 87.0 89.5 2.5 2.5 SOR 803 86.5 87.0 87.6	447	89.0	89.9		92.8	92.8		29	02 7	
509 88.4 89.3 89.3 91.8 2.5 SOR 527 88.8 89.3 89.2 91.8 91.7 2.5 TOR 557 87.8 88.5 88.8 91.0 2.5 SOR SOR 602 87.6 88.3 88.2 90.8 2.5 TOR SOR 634 86.8 87.8 87.8 90.4 2.6 TOP TOP 652 85.3 87.8 90.4 90.3 2.6 2.5 91.4 1.2 Pool X-Section 661 86.7 87.7 87.8 90.4 2.6 TOP SOG 676 87.2 87.8 87.7 90.3 2.5 TOR SOG 735 86.2 86.9 87.0 89.4 89.5 2.5 TOR SOG 763 85.3 86.5 86.1 89.0 2.5 TOR SOR 823 84.8 85.3 85.3 87.8 87.8 2.5 2.5 SOR 823 84.8				89.8				2.0	30.7	
527 88.8 89.3 89.2 91.8 91.7 2.5 SOR 557 87.8 88.5 88.3 91.0 2.5 SOR 602 87.6 88.3 88.2 90.8 2.5 TOR 634 86.8 87.8 87.8 90.5 2.7 SOR 644 86.7 87.8 87.8 90.4 2.6 TOP 652 85.3 87.8 90.4 2.6 TOP 651 86.7 87.7 87.8 90.4 2.7 SOG 661 86.7 87.7 87.8 90.4 2.7 SOG 735 86.2 86.9 87.0 89.5 2.5 7OR 763 85.3 86.5 86.1 89.0 2.5 TOR 803 86.5 87.0 89.5 2.5 2.5 2.5 823 84.8 85.3 85.3 87.8 87.8 2.9 3.0 87.5 1.0 Run X-Section 851 84.0 84.7 84.6	509	88.4	89.3	89.3						
557 87.8 88.5 88.8 91.0 2.5 SOR 602 87.6 88.3 88.2 90.8 2.5 TOR 634 86.8 87.8 87.8 90.5 2.7 SOR 644 86.7 87.8 87.8 90.4 2.6 TOP 652 85.3 87.8 87.8 90.4 2.6 TOP 661 86.7 87.7 87.8 90.4 2.7 SOG 676 87.2 87.8 87.7 90.3 2.5 TOR 735 86.2 86.9 87.0 89.4 89.5 2.5 2.5 763 85.3 86.5 86.1 89.0 2.5 TOR SOG 803 86.5 87.0 87.8 87.8 2.5 2.5 88.6 1.3 Riffle X-Section 851 84.8 85.3 85.3 87.6 2.9 3.0 87.5 1.0 Run X-Section 915 83.3 84.5 84.5 87.0 2.5 7OP 7OP <	527	88.8	89.3	89.2		91.7				
602 87.6 88.3 88.2 90.8 2.5 TOR 634 86.8 87.8 87.8 90.5 2.7 SOR 644 86.7 87.8 87.8 90.4 2.6 TOP 652 85.3 87.8 87.8 90.4 90.3 2.6 2.5 91.4 1.2 Pool X-Section 661 86.7 87.7 87.8 90.4 2.7 SOG SOG 676 87.2 87.8 87.7 90.3 2.5 TOR SOG 735 86.2 86.9 87.0 89.4 89.5 2.5 2.5 TOR 763 85.3 86.5 86.1 89.0 2.5 TOR SOG 803 86.5 87.0 87.8 87.8 2.5 2.5 88.6 1.3 Riffle X-Section 823 84.8 85.3 85.3 87.6 2.9 3.0 87.5 1.0 Run X-Section 851 84.0 84.7 84.7 87.6 2.9 3.0 87.5 1.0 Run X-Section </td <td>557</td> <td>87.8</td> <td>88.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	557	87.8	88.5							
634 86.8 87.8 87.8 90.5 2.7 1000 644 86.7 87.8 87.8 90.4 2.6 TOP 652 85.3 87.8 87.8 90.4 90.3 2.6 2.5 91.4 1.2 Pool X-Section 661 86.7 87.7 87.8 90.4 2.7 SOG SOG 676 87.2 87.8 87.7 90.3 2.5 TOR SOG 735 86.2 86.9 87.0 89.4 89.5 2.5 2.5 TOR 763 85.3 86.5 86.1 89.0 2.5 TOR SOG 803 86.5 87.0 87.8 87.8 2.5 2.5 88.6 1.3 Riffle X-Section 823 84.8 85.3 85.3 87.8 87.6 2.9 3.0 87.5 1.0 Run X-Section 851 84.0 84.7 84.7 87.6 2.9 3.0 87.5 1.0 Run X-Section 915 83.3 84.5 87.0 2.5 2.5<			88.3	88.2	90.8					
644 86.7 87.8 87.8 90.4 2.6 TOP 652 85.3 87.8 87.8 90.4 90.3 2.6 2.5 91.4 1.2 Pool X-Section 661 86.7 87.7 87.8 90.4 2.7 SOG SOG 676 87.2 87.8 87.7 90.3 2.5 TOR SOG 735 86.2 86.9 87.0 89.4 89.5 2.5 7OR TOR 763 85.3 86.5 86.1 89.0 2.5 TOR SOG 803 86.5 87.0 87.8 87.8 2.5 2.5 SOR 823 84.8 85.3 85.3 87.8 87.8 2.5 SOR 883 83.7 84.6 84.7 87.6 2.9 3.0 87.5 1.0 Run X-Section 915 83.3 84.5 84.5 87.0 2.5 7OP 7OP 937 82.9 84.5 84.5 87.0 2.5 87.0 1.0 Pool X-Section	634	86.8	87.8	87.8						
652 85.3 87.8 87.8 90.4 90.3 2.6 2.5 91.4 1.2 Pool X-Section 661 86.7 87.7 87.8 90.4 2.7 SOG SOG 676 87.2 87.8 87.7 90.3 2.5 TOR SOG 735 86.2 86.9 87.0 89.4 89.5 2.5 2.5 TOR 763 85.3 86.5 86.1 89.0 2.5 TOR SOG 803 86.5 87.0 87.8 87.8 2.5 2.5 SOR 823 84.8 85.3 85.3 87.8 87.8 2.5 2.5 823 84.8 85.3 85.3 87.6 2.9 SOR SOR 851 84.0 84.7 87.6 2.9 3.0 87.5 1.0 Run X-Section 915 83.3 84.5 87.0 2.5 TOP TOP 937 82.9 84.5 87.0 2.5 2.5 87.0 1.0 Pool X-Section 953 </td <td></td> <td></td> <td>87.8</td> <td>87.8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			87.8	87.8						
661 86.7 87.7 87.8 90.4 2.7 SOG 676 87.2 87.8 87.7 90.3 2.5 TOR 735 86.2 86.9 87.0 89.4 89.5 2.5 TOR 763 85.3 86.5 86.1 89.0 2.5 708 86.2 86.3 89.5 2.5 708 803 86.5 87.0 87.8 87.8 2.5 2.5 803 86.5 87.0 89.5 2.5 88.6 1.3 Riffle X-Section 823 84.8 85.3 85.3 87.6 2.9 SOR SOR 883 83.7 84.6 84.6 87.5 87.6 2.9 SOR SOR 915 83.3 84.5 84.5 87.0 2.5 70P TOP 937 82.9 84.5 84.5 87.0 2.5 87.0 1.0 Pool X-Section 953 83.8 84.5 84.4 87.0 2.5 2.5 87.0 1.0 Pool X-Section	652	85.3	87.8	87.8	90.4	90.3		25	91 A	
676 87.2 87.8 87.7 90.3 2.5 TOR 735 86.2 86.9 87.0 89.4 89.5 2.5 2.5 763 85.3 86.5 86.1 89.0 2.5 2.5 2.5 803 86.5 87.0 87.0 89.5 2.5 2.5 2.5 823 84.8 85.3 85.3 87.8 87.8 2.5 2.5 823 84.8 85.3 85.3 87.6 2.9 SOR SOR 851 84.0 84.7 84.7 87.6 2.9 SOR SOR 915 83.3 84.5 84.5 87.0 2.5 70P 70P 937 82.9 84.5 84.5 87.0 2.5 2.5 87.0 1.0 Pool X-Section 953 83.8 84.5 84.4 87.0 2.5 2.5 87.0 1.0 Pool X-Section	661		87.7	87.8				2.0	V1.7	
735 86.2 86.9 87.0 89.4 89.5 2.5 2.5 763 85.3 86.5 86.1 89.0 2.5 803 86.5 87.0 87.0 89.5 2.5 823 84.8 85.3 85.3 87.8 2.5 2.5 823 84.8 85.3 85.3 87.6 2.9 SOR 851 84.0 84.7 87.6 2.9 SOR 883 83.7 84.6 84.6 87.5 87.6 2.9 SOR 915 83.3 84.5 84.5 87.0 2.5 70P 70P 937 82.9 84.5 84.5 87.0 2.5 2.5 87.0 1.0 Pool X-Section 953 83.8 84.5 84.4 87.0 2.5 2.5 87.0 1.0 Pool X-Section	676			87.7	90.3					
763 85.3 86.5 86.1 89.0 2.5 803 86.5 87.0 87.0 89.5 2.5 823 84.8 85.3 85.3 87.8 87.8 2.5 851 84.0 84.7 84.7 87.6 2.9 SOR 883 83.7 84.6 84.6 87.5 87.6 2.9 SOR 915 83.3 84.5 84.5 87.0 2.5 7OP 7OP 937 82.9 84.5 84.4 87.0 87.0 2.5 87.0 1.0 Pool X-Section 953 83.8 84.5 84.4 87.0 87.0 2.5 87.0 1.0 Pool X-Section			86.9	87.0	89.4	89.5		25		IOR
803 86.5 87.0 87.0 89.5 2.5 823 84.8 85.3 85.3 87.8 87.8 2.5 2.5 851 84.0 84.7 84.7 87.6 2.9 SOR SOR 883 83.7 84.6 84.6 87.5 87.6 2.9 3.0 87.5 1.0 Run X-Section 915 83.3 84.5 84.5 87.0 2.5 7OP 7OP 937 82.9 84.5 84.4 87.0 87.0 2.5 87.0 1.0 Pool X-Section 953 83.8 84.5 84.4 87.0 2.5 2.5 87.0 1.0 Pool X-Section			86.5	86.1				2.0		
823 84.8 85.3 85.3 87.8 87.8 2.5 2.5 88.6 1.3 Riffle X-Section 851 84.0 84.7 84.7 87.6 2.9 SOR SOR 883 83.7 84.6 84.6 87.5 87.6 2.9 3.0 87.5 1.0 Run X-Section 915 83.3 84.5 84.5 87.0 2.5 TOP 937 82.9 84.5 84.5 87.0 2.5 1.0 Pool X-Section 953 83.8 84.5 84.4 87.0 2.5 2.5 87.0 1.0 Pool X-Section			87.0	87.0	89.5					
851 84.0 84.7 87.6 2.9 SOR 883 83.7 84.6 87.5 87.6 2.9 3.0 87.5 1.0 Run X-Section 915 83.3 84.5 84.5 87.0 2.5 TOP 937 82.9 84.5 84.5 87.0 2.5 1.0 Pool X-Section 953 83.8 84.5 84.4 87.0 2.5 2.5 87.0 1.0 Pool X-Section			85.3	85.3		87.8		2.5	88.6	
883 83.7 84.6 87.5 87.6 2.9 3.0 87.5 1.0 Run X-Section 915 83.3 84.5 84.5 87.0 2.5 TOP 937 82.9 84.5 84.5 87.0 2.5 7OP 953 83.8 84.5 84.4 87.0 2.5 2.5 87.0 1.0 Pool X-Section			84.7	84.7				2.0	00.0	
915 83.3 84.5 84.5 87.0 2.5 TOP 937 82.9 84.5 84.5 87.0 2.5 2.5 TOP 953 83.8 84.5 84.4 87.0 2.5 2.5 87.0 1.0 Pool X-Section			84.6	84.6		87.6		3.0	97 F	
937 82.9 84.5 84.5 87.0 87.0 2.5 2.5 87.0 1.0 Pool X-Section	915	83.3	84.5					5.0	07.0	
953 83.8 84.5 84.4 87.0 2.5 87.0 1.0 Pool X-Section	937	82.9	84.5			87.0		25	97.0	
	953	83.8	84.5			0.10		2.0	07.0	

BASIN CREEK C4 Reference Reach Surveyed by: A Jessup, D Everhart, G Goings, J Pate, J Mickey on 10-26-98

Basin Creek

CROSS SECTIONS

CO. CO.

Presson and a second second second second second second second second second second second second second second

Signamon and

MURAL CONSISTER

Constantion of the second

(managed)

A CONTRACTOR OF

Sta. 0+66 (GI Distance El	lovation 4	Commonte	Sta. 2+02 (Hime)	A	Sta. 3+56		
	99.6	LBF			Comments	Distance	Elevation	Comments
4	99.8 99.3	LOF	0	96.8		0	95.1	
			4	96.3		0	94.1	LBF
7	98.9		8	95.6		0		
10	98.4		11	94.7		2	92.8	
14	97.6		12	94.3		4	91.9	F
15	97.3		13.5	94.1	LEW	7	91.2	LEW
15	97	LEW	16	93.9		7	90.5	
15	95.7		19,4	93.6	TW	9.5	89	l .
18	96.2		23	93.7		10.5	88.9	тw
21	96.6		27	94.1	REW	13	89.6	
25	96.6		30	94.2		16		
30	96.2		33	95.6		18		
35	96.2		37.5	97.0	RBF	20		
38	96.2					21		
41	96.0	TW				29		
43	96.5					35		
44	97.0	REW				40		· · · ·
44	97.9					46		
45	98.6						00.1	
48	99.6							
50	99.7	RBF						
Sta. 3+83 (GI	lde)		Sta. 4+47 (I	Run)		Sta. 6+52		
		Comments	Distance	Elevation	Comments			Commonto
		Comments LTOB	Distance 0.0	Elevation		Distance	Elevation	Comments
Distance El	evation (Distance 0.0	Elevation 93.7	Comments LTOB	Distance 0	Elevation 91.4	
Distance El 0	evation (95.1		Distance 0.0 3.0	Elevation 93.7 91.5		Distance 0 2	Elevation 91.4 90.4	LBF
Distance El 0 3	evation (95.1 93.1		Distance 0.0 3.0 4.0	Elevation 93.7 91.5 91.3		Distance 0 2 5	Elevation 91.4 90.4 89.8	LBF
Distance El 0 3 3	evation (95.1 93.1 91.4	LTOB	Distance 0.0 3.0 4.0 10.0	Elevation 93.7 91.5 91.3 91.2		Distance 0 2 5 6.5	Elevation 91.4 90.4 89.8 88.7	LBF
Distance El 0 3 3 3.5	evation (95.1 93.1 91.4 91.3	LTOB	Distance 0.0 3.0 4.0 10.0 14.0	Elevation 93.7 91.5 91.3 91.2 90.3		Distance 0 2 5 6.5 6.5	Elevation 91.4 90.4 89.8 88.7 87.7	LBF
Distance El 0 3 3 3.5 5	evation (95.1 93.1 91.4 91.3 91.0	LTOB	Distance 0.0 3.0 4.0 10.0 14.0 18.0	Elevation 93.7 91.5 91.3 91.2 90.3 90.2	LTOB	Distance 0 2 5 6.5 6.5 6.5	Elevation 91.4 90.4 89.8 88.7 87.7 87.7	LBF
Distance El 0 3 3.5 5 8 12 14	evation (95.1 93.1 91.4 91.3 91.0 90.8	LTOB LEW	Distance 0.0 3.0 4.0 10.0 14.0 18.0 20.0	Elevation 93.7 91.5 91.3 91.2 90.3 90.2 89.9		Distance 0 2 5 6.5 6.5 6.5 9	Elevation 91.4 90.4 89.8 88.7 87.7 87.7 87.8 86.2	LBF
Distance El 0 3 3.5 5 8 12	evation (95.1 93.1 91.4 91.3 91.0 90.8 90.5	LTOB LEW TW	Distance 0.0 3.0 4.0 10.0 14.0 18.0 20.0 23.0	Elevation 93.7 91.5 91.3 91.2 90.3 90.2 89.9 89.5	LTOB	Distance 0 2 5 6.5 6.5 6.5 11	Elevation 91.4 90.4 89.8 88.7 87.7 87.7 86.2 85.5	LEW
Distance El 0 3 3.5 5 8 12 14	evation (95.1 93.1 91.4 91.3 91.0 90.8 90.5 90.5	LTOB LEW TW	Distance 0.0 3.0 4.0 10.0 14.0 18.0 20.0 23.0 25.0	Elevation 93.7 91.5 91.3 91.2 90.3 90.2 89.9 89.5 89.1	LTOB	Distance 0 2 5 6.5 6.5 6.5 11 11	Elevation 91.4 90.4 89.8 88.7 87.7 87.7 86.2 85.5 85.5	LEW
Distance El 0 3 3.5 5 8 12 14 17	evation (95.1 93.1 91.4 91.3 91.0 90.8 90.5 90.5 91.1	LTOB LEW TW	Distance 0.0 3.0 4.0 10.0 14.0 18.0 20.0 23.0 25.0 28.0	Elevation 93.7 91.5 91.3 91.2 90.3 90.2 89.9 89.5 89.1 89.0	LTOB	Distance 0 2 5 6.5 6.5 6.5 9 11 14	Elevation 91.4 90.4 89.8 88.7 87.7 87.7 86.2 85.5 85.3 85.3	LEW
Distance El 0 3 3.5 5 8 12 14 17 21	evation (95.1 93.1 91.4 91.3 91.0 90.8 90.5 90.5 91.1 91.1	LTOB LEW TW TW	Distance 0.0 3.0 4.0 10.0 14.0 18.0 20.0 23.0 23.0 25.0 28.0 30.0	Elevation 93.7 91.5 91.3 91.2 90.3 90.2 89.9 89.5 89.1 89.0 89.2	LTOB LEW TW	Distance 0 2 5 6.5 6.5 6.5 11 14 14 16	Elevation 91.4 90.4 89.8 88.7 87.7 86.2 85.5 85.3 85.2 85.3	LBF LEW TW
Distance El 0 3 3.5 5 8 12 14 17 21 25	evation (95.1 93.1 91.4 91.3 91.0 90.8 90.5 90.5 90.5 91.1 91.1 91.3	LTOB LEW TW TW	Distance 0.0 3.0 4.0 10.0 14.0 18.0 20.0 23.0 25.0 28.0 30.0 33.0	Elevation 93.7 91.5 91.3 90.3 90.2 89.9 89.5 89.1 89.0 89.2 89.9	LTOB	Distance 0 2 5 6.5 6.5 6.5 11 14 16 19 21	Elevation 91.4 90.4 89.8 88.7 87.7 86.2 85.5 85.3 85.3 85.2 85.6 85.8	LBF LEW TW
Distance El 0 3 3.5 5 8 12 14 17 21 25 28	evation (95.1 93.1 91.4 91.3 91.0 90.8 90.5 90.5 90.5 91.1 91.1 91.3 91.4	LTOB LEW TW TW	Distance 0.0 3.0 4.0 10.0 14.0 18.0 20.0 23.0 23.0 25.0 28.0 30.0 33.0 36.0	Elevation 93.7 91.5 91.3 90.3 90.2 89.9 89.5 89.1 89.0 89.2 89.9 90.7	LTOB LEW TW	Distance 0 2 5 6.5 6.5 6.5 9 11 14 16 19 21 21	Elevation 91.4 90.4 89.8 88.7 87.7 86.2 85.5 85.3 85.2 85.6 85.8 85.8 85.8 85.8 85.8 85.8 85.8	LBF LEW TW
Distance El 0 3 3.5 5 8 12 14 17 21 25 28 31.5	evation (95.1 93.1 91.4 91.3 91.0 90.8 90.5 90.5 91.1 91.1 91.1 91.3 91.4 91.6 93.0	LTOB LEW TW TW	Distance 0.0 3.0 4.0 10.0 14.0 18.0 20.0 23.0 23.0 25.0 28.0 30.0 33.0 36.0 39.0	Elevation 93.7 91.5 91.3 90.3 90.2 89.9 89.5 89.1 89.0 89.2 89.9 90.7 91.0	LTOB LEW TW	Distance 0 2 5 6.5 6.5 6.5 9 11 14 16 19 21 24 29	Elevation 91.4 90.4 89.8 88.7 87.7 86.2 85.5 85.3 85.2 85.6 85.8 85.8 85.8 85.8 85.8 85.8 85.8	LEW
Distance El 0 3 3.5 5 8 12 14 17 21 25 28 31.5 33.5	evation (95.1 93.1 91.4 91.3 91.0 90.8 90.5 90.5 90.5 91.1 91.1 91.1 91.3 91.4 91.6 93.0 93.5	LTOB LEW TW TW	Distance 0.0 3.0 4.0 10.0 14.0 18.0 20.0 23.0 25.0 28.0 30.0 33.0 36.0 39.0 41.0	Elevation 93.7 91.5 91.3 90.3 90.2 89.9 89.5 89.1 89.0 89.2 89.9 90.7 91.0 92.3	LTOB LEW TW	Distance 0 2 5 6.5 6.5 6.5 9 11 14 16 19 21 24 29 34.5	Elevation 91.4 90.4 89.8 88.7 87.7 86.2 85.5 85.3 85.2 85.6 85.8 85.8 85.8 85.8 85.8 85.8 85.8	LEW TW
Distance El 0 3 3.5 5 8 12 14 17 21 25 28 31.5 33.5 34 34.5	evation (95.1 93.1 91.4 91.3 91.0 90.8 90.5 90.5 90.5 91.1 91.1 91.1 91.3 91.4 91.6 93.0 93.5 94.3	LTOB LEW TW TW	Distance 0.0 3.0 4.0 10.0 14.0 20.0 23.0 25.0 28.0 30.0 33.0 36.0 39.0 41.0 43.0	Elevation 93.7 91.5 91.3 90.3 90.2 89.9 89.5 89.1 89.0 89.2 89.9 90.7 91.0 92.3 91.3	LTOB LEW TW	Distance 0 2 5 6.5 6.5 6.5 9 11 14 16 19 21 24 29 34.5 38	Elevation 91.4 90.4 89.8 88.7 87.7 86.2 85.5 85.3 85.2 85.6 85.8 85.8 85.8 85.8 85.8 85.8 85.8	LBF LEW TW REW
Distance El 0 3 3.5 5 8 12 14 17 21 25 28 31.5 33.5 34 34.5 38	evation (95.1 93.1 91.4 91.3 91.0 90.8 90.5 90.5 90.5 91.1 91.1 91.1 91.3 91.4 91.6 93.0 93.5 94.3 94.5	LTOB LEW TW TW	Distance 0.0 3.0 4.0 10.0 14.0 18.0 20.0 23.0 25.0 28.0 30.0 33.0 36.0 39.0 41.0 43.0 48.0	Elevation 93.7 91.5 91.3 90.3 90.2 89.9 89.5 89.1 89.0 89.2 89.9 90.7 91.0 92.3 91.3 92.8	LTOB LEW TW	Distance 0 2 5 6.5 6.5 6.5 9 11 14 16 19 21 24 29 34.5 38 39	Elevation 91.4 90.4 89.8 88.7 87.7 86.2 85.5 85.3 85.2 85.6 85.8 85.8 85.8 85.8 85.8 85.8 85.8	LEW TW
Distance El 0 3 3.5 5 8 12 14 17 21 25 28 31.5 33.5 34 34.5 38 44	evation (95.1 93.1 91.4 91.3 91.0 90.8 90.5 90.5 90.5 91.1 91.1 91.1 91.3 91.4 91.6 93.0 93.5 94.3 94.5 94.7	LTOB LEW TW TW REW	Distance 0.0 3.0 4.0 10.0 14.0 20.0 23.0 25.0 28.0 30.0 33.0 36.0 39.0 41.0 43.0 48.0 51.0	Elevation 93.7 91.5 91.3 90.3 90.2 89.9 89.5 89.1 89.0 89.2 89.9 90.7 91.0 92.3 91.3 92.8 93.2	LTOB LEW TW	Distance 0 2 5 6.5 6.5 6.5 9 11 14 16 19 21 24 29 34.5 38 39 44	Elevation 91.4 90.4 89.8 88.7 87.7 86.2 85.5 85.3 85.2 85.6 85.8 85.8 85.8 85.8 85.8 86.9 87.3 87.8 88.3 87.8 88.3 88.9 89.9	LEW TW
Distance El 0 3 3.5 5 8 12 14 17 21 25 28 31.5 33.5 34 34.5 38	evation (95.1 93.1 91.4 91.3 91.0 90.8 90.5 90.5 90.5 91.1 91.1 91.1 91.3 91.4 91.6 93.0 93.5 94.3 94.5	LTOB LEW TW TW	Distance 0.0 3.0 4.0 10.0 14.0 20.0 23.0 25.0 28.0 30.0 33.0 36.0 39.0 41.0 43.0 48.0 51.0 59.5	Elevation 93.7 91.5 91.3 90.3 90.2 89.9 89.5 89.1 89.0 89.2 89.9 90.7 91.0 92.3 91.3 92.8 93.2 93.6	LTOB LEW TW	Distance 0 2 5 6.5 6.5 6.5 9 11 14 16 19 21 24 29 34.5 38 39 44	Elevation 91.4 90.4 89.8 88.7 87.7 86.2 85.5 85.3 85.2 85.6 85.8 85.8 85.8 86.9 87.3 87.8 88.3 87.8 88.3 88.9 89.9 89.9	lbf Lew Tw Rew
Distance El 0 3 3.5 5 8 12 14 17 21 25 28 31.5 33.5 34 34.5 38 44	evation (95.1 93.1 91.4 91.3 91.0 90.8 90.5 90.5 90.5 91.1 91.1 91.1 91.3 91.4 91.6 93.0 93.5 94.3 94.5 94.7	LTOB LEW TW TW REW	Distance 0.0 3.0 4.0 10.0 14.0 20.0 23.0 25.0 28.0 30.0 33.0 36.0 39.0 41.0 43.0 48.0 51.0	Elevation 93.7 91.5 91.3 90.3 90.2 89.9 89.5 89.1 89.0 89.2 89.9 90.7 91.0 92.3 91.3 92.8 93.2	LTOB LEW TW	Distance 0 2 5 6.5 6.5 6.5 9 11 14 16 19 21 24 29 34.5 38 39 44 47 49.5	Elevation 91.4 90.4 89.8 88.7 87.7 86.2 85.5 85.3 85.2 85.6 85.8 85.8 86.9 87.3 87.8 88.3 87.8 88.3 87.9 90.3	lbf Lew TW REW
Distance El 0 3 3.5 5 8 12 14 17 21 25 28 31.5 33.5 34 34.5 38 44	evation (95.1 93.1 91.4 91.3 91.0 90.8 90.5 90.5 90.5 91.1 91.1 91.1 91.3 91.4 91.6 93.0 93.5 94.3 94.5 94.7	LTOB LEW TW TW REW	Distance 0.0 3.0 4.0 10.0 14.0 20.0 23.0 25.0 28.0 30.0 33.0 36.0 39.0 41.0 43.0 48.0 51.0 59.5	Elevation 93.7 91.5 91.3 90.3 90.2 89.9 89.5 89.1 89.0 89.2 89.9 90.7 91.0 92.3 91.3 92.8 93.2 93.6	LTOB LEW TW	Distance 0 2 5 6.5 6.5 6.5 9 11 14 16 19 21 24 29 34.5 38 39 44 47 49.5 52	Elevation 91.4 90.4 89.8 88.7 87.7 86.2 85.5 85.3 85.2 85.6 85.8 85.8 86.9 87.3 87.8 88.3 87.8 88.3 87.9 90.3 90.7	lbf Lew TW REW
Distance El 0 3 3.5 5 8 12 14 17 21 25 28 31.5 33.5 34 34.5 38 44	evation (95.1 93.1 91.4 91.3 91.0 90.8 90.5 90.5 90.5 91.1 91.1 91.1 91.3 91.4 91.6 93.0 93.5 94.3 94.5 94.7	LTOB LEW TW TW REW	Distance 0.0 3.0 4.0 10.0 14.0 20.0 23.0 25.0 28.0 30.0 33.0 36.0 39.0 41.0 43.0 48.0 51.0 59.5	Elevation 93.7 91.5 91.3 90.3 90.2 89.9 89.5 89.1 89.0 89.2 89.9 90.7 91.0 92.3 91.3 92.8 93.2 93.6	LTOB LEW TW	Distance 0 2 5 6.5 6.5 6.5 9 11 14 16 19 21 24 29 34.5 38 39 44 47 49.5	Elevation 91.4 90.4 89.8 88.7 87.7 86.2 85.5 85.3 85.2 85.6 85.8 85.8 86.9 87.3 87.8 88.3 87.8 88.3 88.9 89.9 89.9 89.9 90.3 90.7	lbf Lew TW Rew RBF

BASIN CREEK C4 Reference Reach Surveyed by: A Jessup, D Everhart, G Goings, J Pate, J Mickey on 10-26-98

3ta. 8+23 (_	Sta. 8+83 (I			Sta. 9+37 (i	Pool)	
		Comments	Distance	Elevation (Comments	Distance	Elevation	Comment
0		LTOB	0	87.5 L	.BF	0		LBF
2	88.3		4	86.9		2	86.4	
8	88.3		8	86.5		6	86	
10,5	87.8		12	85.9		10	86.2	
13	87.2		12	85.1		15	86.2	
15	86.3		16	84.6 1	.EW	20	85,9	
16	85.9		19	84.4		24	86.2	
16	85.3		23	84.2		29	86.1	
18	85.1		25	84.2		33	85.8	
22	85		28	84.2		34.5	84.8	
24	84.8	TW	31	83.7	rw ·	40	84.7	
26	84.9		33	84		43		LEW
29	85		35	84.6 i	REW	47	84.2	
31	85.2		36	85.2		50	84.3	
33	85		40	86.9		55	83.4	
35	85.2		42.5	87.6	RBF	57	82.9	
37	85.3	REW				58		REW
38	86.9					60	85.3	
40	87.8	RBF				61.5	85.2	
46	88.6	RTOB				62	85.7	
						63	86	
						65	86.5	
						· 68		RBF

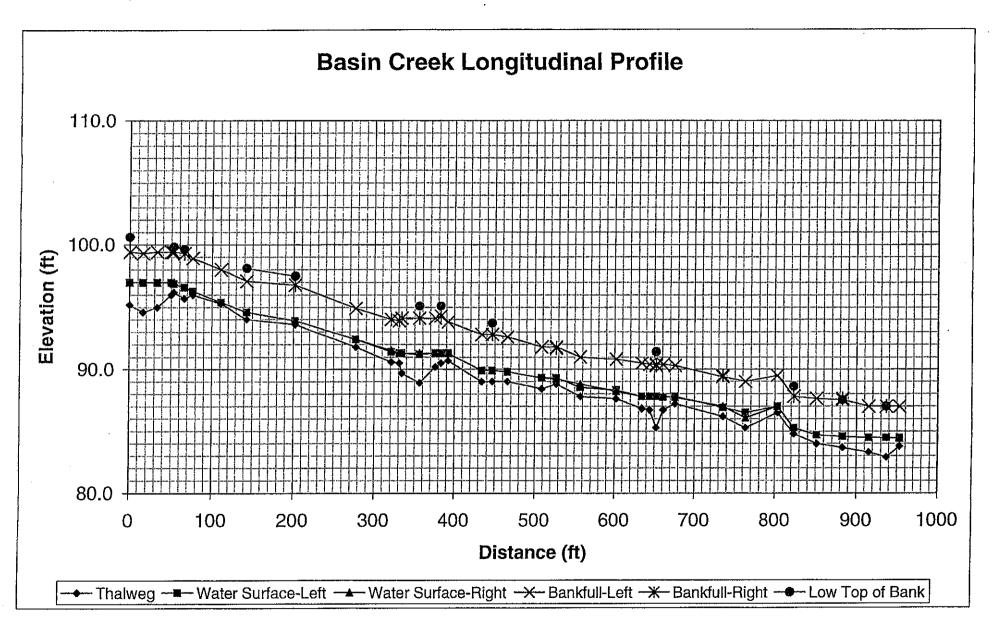
BASIN CREEK C4 Reference Reach Surveyed by: A Jessup, D Everhart, G Goings, J Pate, J Mickey on 10-26-98

Service and the same

Contract on Description

Announce and

Aprication numerood


AND AVERAGES

Constant Andread

Concernance of the Concernance o

(Example of the second

Wilkes County, NC

Basin C	reek - Re	ference Read	h Data						
Jnannei L	Jimensions	@ Bankfull Eleva	uon						
Riffle									·
Station	Feature	Mean Depth (ft)	Max Depth (ft)	Width (ft)	Area (ft2)	FPA width (ft)	Facet Slope (ft/ft)		
	1		induct D op at (it)	That is				w/u	E
2+02	Crossover	1.9	3.2	36.9	71.9	329	0.02	19.4	8.
8+23	Crossover	2.2	3.0			No measurement	0.0177		
	Total	4.1	6.2	66.4	136.8	329	0.0377	32.8	8.
	Average	2.1	3.1	33.2	68.4	329	0.018850		8,
				Avg facet	slope for al	riffle reaches	0.020821		
Run				<u>_</u>					ļ
Station	Feature	Mean Depth (ft)	Max Depth (ft)	Midth (#)	Arpa (#2)	FPA width (ft)	Equat Diana (4)		
	1 64.010		max Deput (It)		niea (IIZ)		Facet Slope (ft/ft)	W/d	E
4+47	Middle	2.2	3.8	47.0	102	No measurement	0.003125	21 4	
8+83	Middle	2.2	3.8	42.5	93.4	No measurement	0.003125		n/ n/
							0.000123	13.5	
	Total	4.4	7.6	89,5	195.4	0	0.00625	40.7	
	Average	2.2	3.8	44.8			0.003125		
				Avg facet	slope for al	I run reaches	0.003064		
Glide									
Station	Feature	Mean Depth (ft)	May Death (ft)	14/1-144-7441	A				
Station	reature	Mean Depth (it)	Max Depth (it)		Area (ft2)	FPA width (ft)	Facet Slope (ft/ft)	w/d	E
0+66	Middle	2.3	3.6	43.0	98.5	No measurement	0.026087	107	
3+83	Middle	3.0	3.8			No measurement		11 2	<u>n/</u>
							0.0000001	11.4	
	Total	5.3	7.4	76.5	197.4	0	0.0194203	29.9	
	Average	2.7	3.7	38,3	98.7		0.009710		
				Avg facet	slope for al	I glide reaches	0.006473		
Pool					·		·	ļ	ļ
Station	Feature	Mean Depth (ft)	Max Dopth (ft)	Midth (ft)	Area (#0)	FPA width (ft)	French Olars (0)(0)		
Otation	J eatore	mean Depin (it)	Max Deptit (it)		Area (IIZ)		Facet Slope (ft/ft)	w/d	ΕΕ
3+56	Middle	2.6	5.2	35.0	89.3	no measurement	0.0000000	12 #	
6+52	Middle	2.8				no measurement			
9+37	Middle	n/a				no measurement			
								1	<u>├''</u>
	Total	5.4	······································					73.1	10
	Average	2.7	4.8	50.3	109.6				10
		L		1					
				Avg facet	slope for a	I pool reaches	0.0019423	3	T

ланаларынан аларынан алар

And a substantial second second

gal begand and gal and

Antonio international

.

Concession of the State

0

AGJ

Basin Creek

BASIN CREEK REFERENCE REACH - Rosgen Type C4

Allower and the second second second

A Ferritrium and a second second

Gamerround

(Anonesian and A

film you wanted

(RANALISADOR)

(Anna second

(Contraction)

Constant of the second s

Distant

Location: Wilkes County, NC - Take Traphill Road to Long Bottom Road (SR 1737) Reach: Station 0+00 at confluence of Basin and Cove Creeks Quad Sheet: Whitehead, NC Drainage Area: 7.2 sq. mi.

Length		Riffles	Runs	Glides	Pools	
0		42	10	13	17	
		43	18	15		
		30	32		38	
				16	42	
		32	45	23	53	
		175	64			
		245				
	Total	567	169	67	150	953
	Avg	94.5	33.8	16.8	37.5	300
		• 110	0010	10.0	57.5	
%		500/	100/			
• -		59%	18%	7%	16%	
%Riffles & Glides :		84%				
Channel Dimensio	ns:					
Riffle Depth (ft)		2 1 Bif	fle Width (ft)	33.0 🖻	liffle Area (sq ft)	60 A
Run Depth (ft)			n Width (ft)			68.4
Glide Depth (ft)			de Width (ft)		un Area (sq ft)	97.7
Pool Depth (ft)			ol Width (ft)		ilide Area (sq ft)	98.7
r oor beptin (ity		2.7 FU		50.3 P	ool Area (sq ft)	109.6
Ratios:						
Pool Depth/Riffle [Depth =		1.3			
Pool Width/Riffle V	•		1.5			
Pool Area/Riffle Ar	'ea =		1.6			
Max Pool Depth/M		th =	2.3			
Lowest Bank Heig			1.0 to 1.3	Mean value 1.2		
Londor Builleridig		chtu-	1.0 10 1.5	Weatt value 1.2		
Streamflow:						
Est Mean Velocity	@ BKF (ft/sec) =		5.5			
Est Discharge @ E			375			
-						

USDA-NRCS

Channel Pattern:

Anno-anno

American American

aller of the second

ACCESSION OF A DESCRIPTION

(non-nanosa)

Alistana managan Alistana kangan

(Alternative)

Meander Length (ft)	350		Belt Width (ft)	60 59 75	Radius of Curvature (ft)	44.3 69.3 40.1
Total Average	350 350		Total Average	194 64.7	Total Average	153.7 51.2
Ratios;				1	·	
MWR = belt width/bkf width = Rc/bkf width = Lm/bkf width =	1.9 1.5 10.5					
Channel Profile:						
Valley Slope (ft/ft) = Riffle Slope (ft/ft) = Run Slope (ft/ft) =	0.02082 0.003064	Avg Water Surfac	ce Slope (ft/ft) = Pool Slope (ft/ft) = Glide Slope (ft/ft) =	0.01437 0.001942 0.006473		
Pool to Pool Spacing (ft)	334 310 271	Pool Length (ft)	17 38 42 53			
Sum Average	915 305.0	Sum Average				
Ratios:						
Riffle slope/Avg WS slope = Run slope/Avg WS slope = Pool slope/Avg WS slope= Glide slope/Avg WS slope= Glide depth/mean bkf depth = Pool length/bkf width = Pool to Pool spacing/bkf width =		1.4 0.2 0.1 0.5 1.3 1.1 9.2				

Pebble Count

SPACE CONTRACTOR

Contraction of the

Andrew Constants

(Relation Artist

(and a second se

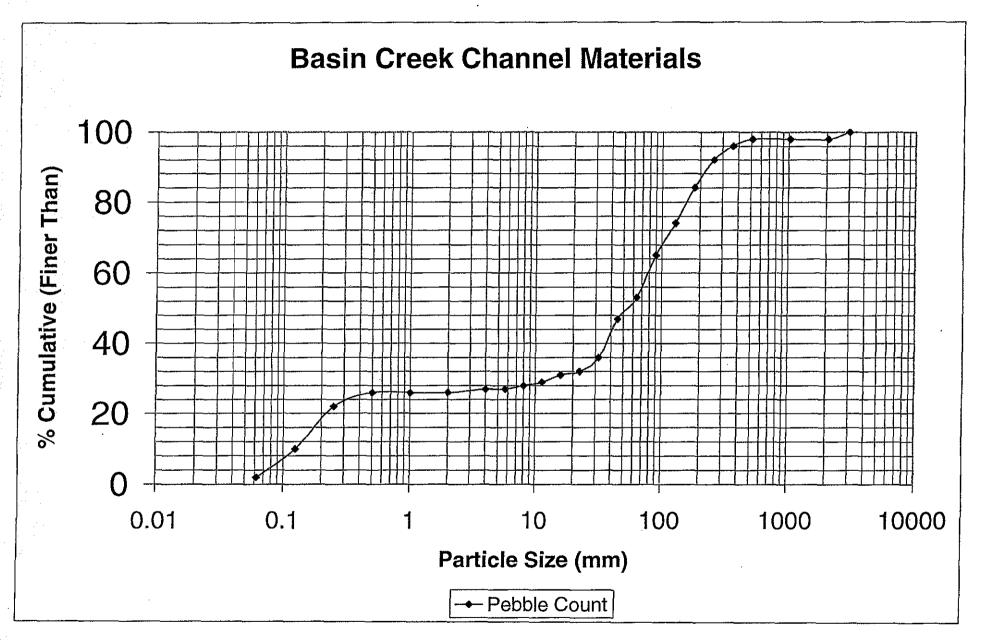
Same and

Sector Sector

And a subscription of the

Construction of the

Construction of the local data


Date: 10/28/1998 Party: Dick Everhart, Jerry Pate, Greg Goings and Joe Mickey

Partic		Total #	ŧ % Cum.
Silt/C	lay <0.062	2	2
S Very	Fine 0.062-0.125	8	10
A Fine	0.125-0.25	12	22
N Medi	um 0.25-0.50	4	26
D Course	e 0.50-1.0	0	26
Vėry	Course 1.0-2.0	0	26
Very	Fine 2-4	1	27
G	4-5.7	0	27
R Fine	5.7-8	1	28
	um 8-11.3	1	29
A Medi	um 11.3-16	2	31
Cour	se 16-22.6	1	32
Cour	se 22.6-32	4	36
	Course 32-45	11	47
Very	Course 45-64	6	53
C Small	64-90	12	65
Small	1 90-128	9	74
B Larg	e 128-180	10	84
Larg	e 180-256	8	92
B	1 256-362	4	96
Small	l 362-512	2	98
L L Med		0	98
D Larg	e-Vry Lrg 1024-2048	0	98
Bedr	ock >2048	2	100
			100

Channel Materials:

% Sand = 26 % Gravel = 27 % Cobble = 39 % Boulder = 6 % Bedrock = 2 D16 = 0.17 mm D35 = 29 mm D50 = 58 mm D84 =180 mm D95 = 300 mm C4 Reference Reach

11/29/2001

RIGHERIEN GE RIFA (EH SORVIEN) Stream Name , BigBranch, Edenion Ruipose: Fongitium/IPpople and Gross-section in extrements for Graduate Work Dates 8/12/1099 Greve Dan Chinton (Jan Patterson Hin Buck Enthing Point PAU/DONG Watersheit Aren 1995 mil SERIOAMETAPEZE

REFERENCE REACH Summary Data

Channel Dimensions

Wesner

Service and service of

And a second second

Statute Constants

NAME OF COLUMN

	Mean	Median	Min	Max
Max. Riffle Depth(drmax)(ft.):	2.6	2.6	1.4	1.5
Riffle Width(Wr)(ft.):	20.8	20.8	0.0	0.0
Riffle X-Sect. Area(Ar)(ft^2):	41.8	41.8	15.0	15.5
Riffle Mean Bankfull Depth(dmbkf):	2.0	2.0	0.9	0.9

	#1	#2
Max. Pool Depth(dpmax)(ft.);	4.0	3.5
Pool Width(Wp)(ft.):	17.8	19.0
Pool X-Sect. Area(Ap)(ft.):	51.7	51.0

_	Mean	Median	Min	Max
Ratio: Max. Pool Depth/Max. Riffle Depth(dpmax/drmax):[1.53	1.53	2.49	2.64
Ratio: Pool Width/Riffle Width(Wp/Wr):	0.86	0.86	#DIV/01	#DIV/0!
Ratio: Pool Area/Riffle Area(Ap/Ar):		1.24	3.45	3.34
Ratio: Max. Pool Depth/Mean Bankfull Depth(dpmax/dbkf);	1.96	1.96	4.40	4.40
Ratio: Lowest Bank Height/Max. Bankfull Depth(Bhlow/dmbkf):	1			
Streamflow: Estimated Mean Velocity(u) @ Bankfull Stage:		ft./sec.		
Streamflow: Estimated Discharge(Q) @ Bankfull Stage:		CFS		

Channel Pattern		Меал	Median	Min	Max
	Meander Wavelength(Lm):	54	55	42	63 ft.
	Radius of Curvature(Rc):	223	223	185	260 ft.
	Beltwidth(Wblt):	37	37	31	44 ft.
	-				

Meander Width Ratio(MWR=Wblt/Wbkf):		1.80	#DIV/0!	#DIV/0!
RATIO: Radius of Curvature/Bankfull Width(Rc/Wbkf):		10.72	#DIV/0!	#DIV/0!
RATIO: Meander Wavelength/Bankfull Width(Lm/Wbkf)	2.58	2.67	#DIV/0!	#DIV/0!

Channel Profile	Mean	Median	Min	Max	
Valley Slope:	0.0087	ft./ft			
Water Surface Slope:	0.0087	ft./ft			
Riffle Slope:	0.0169	0.0163	0.02	0.0192	ft./ft
Pool Slope:	0.0001	0.0000	0.0000	0.0004	ft./ft
Run Slope:	0.0011	0.0011	0.001	0.0011	ft./ft
Glide Slope:	0.0015	0.0015	0.00	0.0030	ft./ft
Riffle Length:	58.5	74.0	23.4	78.0	ft.
Pool Length:	26.9	25.0	23.6	32.0	ft.
Run Length:	66.0	66.0	66.0	66.0	ft.
Glide Length:	9.0	9.0	8.0	10.0	ft.
Riffle to Riffle Spacing:	128.2	128.2	82.3	174.0]ft.
Pool to Pool Spacing:	138.7	138.7	97.5	179.8]ft.
Riffle to Pool Spacing:	63.0	44.5	23.5	121.0]ft.
					_
RATIO: Riffle Slope/ Water Surface Slope:		1.87	1.76	2.21	3
RATIO: Pool Slope/Water Surface Slope:		0.00	0.00	0.05]
RATIO: Run Slope/Water Surface Slope:		0.12	0.12	0.12].
RATIO: Glide Slope/ Water Surface Slope:		0.17	0.00	0.34	1
RATIO: Max. Riffle Depth/Mean Bankfull Depth:	1.28				-
RATIO: Max.Pool Depth/Mean Bankfull Depth:]			
RATIO: Max. Run Depth/Mean Bankfull Depth:					
RATIO: Max. Glide Depth/Mean Bankfull Depth:	n/a]			
RATIO: Riffle Length/Bankfull Width:	2.82	3.57	1.13	3.76	٦.
RATIO: Pool Length/Bankfull Width:	1.29	1.20	1.14	1.54	1
RATIO: Run Length/Bankfull Width:	3.18	3.18	3.18	3.18	1
RATIO: Glide Length/Bankfull Width	0.43	0.43	0.39	0.48	1
RATIO: Riffle to Riffle Spacing/Bankfull Width		6.18	3.97	8.39	1
RATIO: Pool to Pool Spacing/Bankfull Width:	6.68	6.68	4.70	8.67	7
RATIO: Riffle to Pool Spacing/Bankfull Width:	3.04	2.14	1.13	5.83]

LONGITUDINAL PROFILE (Using Level)

Bench Mark #1=	100 ft.			
BS = 4.79	HI = 104	4.79 BM1 is nail at b	ase of hemlock	
TP1 BS= 4.68	TPi HI≓	104.30 TP1 FS=	5.17 TP1 El.=	99.62
TP2 BS= 3.97	TP2 HI=	102.81 TP2 FS=	5.46 TP2 El.=	98.84
TP3 BS= 5.39	TP3 HI=	104.23 TP3 FS=	3.97 TP3 El.=	98.84
TP4 BS= 4.8	TP4 HI=	104.41 TP4 FS=	4.62 TP4 El.=	99.61
		FS to BM= 4.4	l BM El.=	100.00

FS to BM= 4.41 BM El.= ERROR=

0.00

TR= Top of riffle TP=Top of Pool TG= Top of glide Trun= Top of Run MP= Max Pool LBKF = Left Bankfull RBKF= Right Bankfull TW= Thal Wag LEW= Left Edge of Water REW= Right Edge of Water

				Water		-				Mid	
	Thawl Wag	Thawl Wag	Water	Surface	<u>LBKF</u>	BKF	<u>IB (FS)</u>	IB Elev.	Notes	Feature	
Distance	<u>(FS)</u>	Elev.	Surface (FS)	Eley,	<u>(FS)</u>	Eley.				 Location	Feature
0.0	7.6			97.5	5.2	99.6			TR	11.7	R
3.0	7.5	97.3	7.27	97.5	5.0	99,8			x-sect #1		
11.0	7.7	97.1	7.50	97.3	5.4	99.4					
23.4	7.9			97.1	5.5	99.3	6.54	98.3	TP	35.2	P
35.0		95.6		97.2					X-Sect #2	÷	
41.0			7.67	97.1	5.6	99.2			Pmax		
47.0			7.66	97.1	5.2	99.6			TG	51.0	G
55.0		the second second second second second second second second second second second second second second second se	7.64	97.2	5.3	99.5			TR	94.0	R
84.0			8.09	96.7	5.7	99.1					
92.0	8.4			96.7	5.7	99.1	7.17	97.6	X-Sect#3		
133.0	9.2			95.9	6.5	98.3	8.1	96.7	Trun	166.0	Run
166.0	9.4			95.9	6.1	98.2	7.4	96.9			
199.0	8.8			95.8	6.1	98.2			TP	215.0	Р
216.0	and the second se		8.47	95.8	6.0	98.3	7.75	96.6	Pmax		
231.0	8.8	95.5	8.49	95.8					TR	268.0	R
259.0			7.33	95.5	5.2	97.7					
305.0	8.4	94.5	8.13	94.7	5.7	97.1			TP	312.5	Р
313.0	9.2	93.6	8.17	94.6	5.7	97.1	7.1	95.7	X-sect #4		
315.0			. 8.14	94.7					Ртах		
320.0			8.11	94.7					TG	325.0	G
330.0	8.5	94.3	8.14	94.7	5.7	97.1	7.35	95.5	TR		R
L	<u> </u>	L						L			

X_SECTION MEASUREMENTS Riffle X-Section #1 Location : 0+03 Hi= 104.79 (arbitra

-

WARMAGATTA

a comparedora

descent second

Alteration of the second

(Anto-Anto-Anto-A

(Shares Autor)

(increased)

Concernant of the

(ANALYSIS)

104.79 (arbitrary... used depth off rod)


 Depth

 FS
 Elev
 Notes
 from BKF
 Width

Distance	FS	Elev	Notes
0	0.6	104.2	
7	3.8	101.0	
12	4	100.8	1
15	4.2	100,6]
17	4.4	100.4	LTOB
19.5	5	99.8	LBKF
21	5.8	99.0	1
21.2	7.5	97.3	LEW
23	7.5	97.3	TW
26	7.4	97.4	
29	7.4	97.4	
30.5	7.27	97.5	REW/WS
34	7.1	97.7	
36	6.9	97.9	
38.5	7.1	97.7	
41	5	99.8	RBKF
43	4.4	100.4	
46	3.6	101.2	RTOB
50	3,8	101.0	
56	4.2	100.6	
64.5	3,8	101.0	
	0 7 12 15 17 19.5 21 21.2 23 28 29 30.5 34 36 38.5 41 43 46 50 56	0 0.6 7 3.8 12 4 15 4.2 17 4.4 19.5 5 21 5.8 21.2 7.6 23 7.5 28 7.4 29 7.4 30.5 7.27 34 7.1 36 6.9 38.5 7.1 41 5 43 4.4 46 3.6 50 3.8 56 4.2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

0.0	0.0	0.0
0.8	1.5	0.6
2.5	0.2	0.3
2.5	1.8	4.5
2.4	3.0	7.4
2.4	3.0	7.2
2.3	1.5	3.5
2.1	3.5	7.6
1.9	2.0	4.0
2.1	2.5	5.0
0.0	2.5	2.6
	TOTAL	42.8

<u>Area</u>

Riffle X-Sect	ion #2
Location ;	0+92
ш	100.02

Distance	FS	Elevation	Notes
0.0	0.0	100.0	
5.0	1.1	98.9	1
9,0	0.6	99.4	
11.0	0.4	99.6	1
13.0	0.7	99.3	LTOB
14.0	0.9	99.1	LBKF
16.0	2.1	97.9	1
16.7	2.7	97.3	1
16.8	3.6	96.4	LEW
18.8	3.5	96.5	1
21.0	3.3	96.7	1
23.3	3.4	96.6	
28.2	3.6	96.4	TW
30.7	3.34	96.68	REW/WS
31.1	2.4	97.6	RIB
32.3	2,2	97.8	1
34	0.94	99.1	RBKF
37	0.1	99.9	RTOB

(arb.)

	<u>Depth</u>		
<u>es</u>	from BKF	<u>Width</u>	<u>Area</u>

0.0	0.0	0.0
1.2	2.0	1.2
1.8	0.7	1.0
2.7	0,1	0.2
2.6	2.0	5.2
2,4	2.2	5.4
2.5	2.3	5.5
2.7	4.9	12.5
2.4	2.5	6.3
1.5	0.4	0.8
1.3	I.2	1.6
0.0	1.7	1.1

Pool X-Section #1 Location : 0+35 HI = 100

					Denth	
	Distance	FS	Elev	Notes	<u>Depth</u> from BKF	Width
1	0.0	1.8	98.2]		
	3.0	3.6	96.4			
	6.4	4.5	95.5	1		
	10	4.9	95.1	1		
	23	4.9	95.1	1		
	24.5	4.8	95.2	1		
	26	5.1	94.9	LTOB		
	26.5	5.24	94.76	LBKF	0	0
	27	5.59	94.41	1	0.4	0.5
	29	6.8	93.2	1	1.6	2
	29.2	7.9	92.1	LEW	2.7	0.2
	32	8.2	91.8	1	3.0	2.8
	35	9.1	90.9	1	3.9	3
	37	9.2	90.8	TW	4.0	2
	40	9	91	1	3.8	3
	43	7.62	92.38	REW/WS	2.4	3
	44.2	7.2	92.8	7	2.0	1.2
	44.3	5.24	94.76	RBKF	0.0	0.1
	44.4	5	95]		
	46	3.9	96.1	RTOB	sum:	51.7

(arb.)

в			
F	0	0	0
	0.4	0.5	0.1
	1.6	2	1.9
٧.	2.7	0.2	0.4
	3.0	2.8	7.9
	3.9	3	10.2
1	4.0	2	7.8
	3.8	3	11.6
WS	2.4	3	9.2
	2.0	1.2	2.6
F	0.0	0.1	0,1
в	sum:	51.7	sq. ft.

Width

0.0

1.5

2.0

3.0

2.0

1.0

2.0

2.0

3.0

0.1

0.9

0.8

0.7

TOTAL.

<u>Area</u>

0.0

1.8

5.6

9.9

6.9

3.5

6.8

6.4

8.6

0.2

0.9

0.3

0.0

51.0

<u>Area</u>

BKF Width = 17.8

> Area = 51.7

Max. depth = 4.0

Mean Depth= 2.9 Width/Depth Ratio=

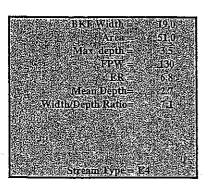
6.1

Pool X-Section #2

Constanting of

and a second second second second second second second second second second second second second second second

and the second


Contraction of the local division of the loc

hudoparano

Location : 3+13

Distance

104.79 (arbitrary ... used depth off rod) HI= Depth Elev Notes from BKF 99.3 0 5.53 0.5 5.72 99.1 LBKF 0.0 96.6 LEW/WS 2 8.17 2.5 95.9 4 8.87 3.2 7 9.2 95.6 ΤW 3.5 3.4 9 9.15 95.6 10 9.19 95.6 3.5 3.3 12 9.03 95.8 14 8.81 96.0 3.1 17 8.39 96.4 REW 2.7 17.1 7.1 97.7 RIB 1.4 6.35 98.4 18 0.6 18.8 5.79 99.0 0.1 99.1 19.5 5.72 RBKF 0.0 21 5.21 99.6 RTOB

